JURNALMATEMATKKA,STATISTKA DANKOMPUTASI

e-ISSN: 2614-8811

Published by Departement of Mathematics, Hasanuddin University, Indonesia https://journal.unhas.ac.id/index.php/jmsk/index

Vol. 20, No. 1, September 2023, pp. 136-151
DOI: 10.20956/j.v20i1.26675

Tensor product for g-fusion frame in Hilbert C^{*}-modules

Fakhr-dine Nhari ${ }^{1}$, Mohamed Rossafi ${ }^{2}$, Youssef Aribou ${ }^{3}$
${ }^{1}$ Laboratory Analysis, Geometry and Applications Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco
${ }^{2}$ Department of Mathematics, Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, P. O. Box 1796 Fez Atlas, Morocco
${ }^{3}$ Laayoune Higher School of Technology, Ibn Zohr University, Laayoune, Morocco
E-mail: ${ }^{1}$ nharidoc@gmail.com, ${ }^{2}$ rossafimohamed@gmail.com, ${ }^{3}$ aribouyoussef3@gmail.com

Abstract

.

In this paper, we stady the tensor product of g-fusion frame in Hilbert C^{*} - modules and we give the frame operator for a pair of g-fusion Bessel sequences in tensor product of Hilbert C^{*}-modules.

Keywords: G-fusion Frame, tensor product, Hilbert C^{*}-module.

1. Introduction and Preliminaries

In the study of vector spaces one of the most important concepts is that of a basis, allowing each element in the space to be written as a linear combination of the elements in the basis. However, the conditions to a basis are very restrictive: linear independence between the elements. This makes it hard or even impossible to find bases satisfying extra conditions, and this is the reason that one might look for a more flexible substitute. Frames are such tools. A frame for a vector space equipped with inner product also allows each element in the space to be written as a linear combination of the elements in the frame, but linear independence between the frame elements is not required.

Frames for Hilbert spaces were introduced by Duffin and schaefer [5] in 1952 to study some deep problems in nonharmonic fourier series by abstracting the fondamental notion of Gabor [6] for signal processing.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 Intemational License

Fakhr-dine Nhari, Mohamed Rossa, Youssef Aribou

Many generalizations of the concept of frame have been defined in Hilbert C^{*}-modules [7, 9, $11,12,13,14,15]$

Tensor products have important applications, for example tensor products are useful in the approximation of multi-variate functions of combinations of univariate ones.

In this paper we consider the tensor product of Hilbert C^{*}-modules and we generalize some of known results about frames to generalized-fusion frames in Hilbert C^{*}-modules.

The paper is organized as follows, we continue this introductory section we briefly recall the definitions and basic properties of C^{*}-algebra and Hilbert C^{*}-modules. In section 2, we introduce the concept of g-fusion frame, and gives an equivalent definition. In section 3 , we introduce the concept of the tensor product of g-fusion frame and gives some properties. Finally in section 4, we discuss the frame operator for a pair of g-fusion Bessel sequences in tensor product of Hilbert C^{*}-modules.

In the following we briefly recall the definitions and basic properties of C^{*}-algebra, Hilbert \mathcal{A}-modules. Our reference for C^{*}-algebras is [4, 3]. For a C^{*}-algebra \mathcal{A} if $a \in \mathcal{A}$ is positive we write $a \geq 0$ and \mathcal{A}^{+}denotes the set of positive elements of \mathcal{A}.

Definition 1.1. [3]. If \mathcal{A} is a Banach algebra, an involution is a map $a \rightarrow a^{*}$ of \mathcal{A} into itself such that for all a and b in \mathcal{A} and all scalars α the following conditions hold:
(1) $\left(a^{*}\right)^{*}=a$.
(2) $(a b)^{*}=b^{*} a^{*}$.
(3) $(\alpha a+b)^{*}=\bar{\alpha} a^{*}+b^{*}$.

Definition 1.2. [3]. A C^{*}-algebra \mathcal{A} is a Banach algebra with involution such that:

$$
\left\|a^{*} a\right\|=\|a\|^{2}
$$

for every a in \mathcal{A}.

Example 1.3. $\mathcal{B}=B(H)$ the algebra of bounded operators on a Hilbert space, is a C^{*}-algebra, where for each operator A, A^{*} is the adjoint of A.

Definition 1.4. [8]. Let \mathcal{A} be a unital C^{*}-algebra and H be a left \mathcal{A}-module, such that the linear structures of \mathcal{A} and U are compatible. H is a pre-Hilbert \mathcal{A}-module if H is equipped with an \mathcal{A}-valued inner product $\langle.,\rangle:. H \times H \rightarrow \mathcal{A}$, such that is sesquilinear, positive definite and respects the module action. In the other words,
(i) $\langle x, x\rangle \geq 0$ for all $x \in H$ and $\langle x, x\rangle=0$ if and only if $x=0$.
(ii) $\langle a x+y, z\rangle=a\langle x, z\rangle+\langle y, z\rangle$ for all $a \in \mathcal{A}$ and $x, y, z \in H$.
(iii) $\langle x, y\rangle=\langle y, x\rangle^{*}$ for all $x, y \in H$.

For $x \in H$, we define $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$. If H is complete with $\|$.$\| , it is called a Hilbert$ \mathcal{A}-module or a Hilbert C^{*}-module over \mathcal{A}.

Throughout this paper I and J are finite or countably infinite index sets, we fix the notations \mathcal{A} and \mathcal{B} for a given unital C^{*}-algebras, H and K are the countably generated Hilbert \mathcal{A}-module and \mathcal{B}-module, respectively. Let $\left\{H_{i}\right\}_{i \in I}$ and $\left\{K_{j}\right\}_{j \in J}$ are the sequences of closed orthogonally complemented submodules of H and K, respectively. $\left\{W_{i}\right\}_{i \in I}$ and $\left\{V_{j}\right\}_{j \in J}$ are the sequences of Hilbert C^{*}-modules. $E n d_{\mathcal{A}}^{*}\left(H, W_{i}\right)$ is a set of all adjointable operator from H to W_{i}. In particular $E n d_{\mathcal{A}}^{*}(H)$ denote the set of all adjointable operators on $H . P_{H_{i}}$ denote the orthogonal projection onto the closed submodule orthogonally complemented H_{i} of H.

Define the Hilbert \mathcal{A}-module

$$
l^{2}\left(\left\{W_{i}\right\}_{i \in I}\right)=\left\{\left\{x_{i}\right\}_{i \in I}: x_{i} \in W_{i},\left\|\sum_{i \in I}\left\langle x_{i}, x_{i}\right\rangle\right\|<\infty\right\}
$$

with \mathcal{A}-valued inner product $\left\langle\left\{x_{i}\right\}_{i \in I},\left\{y_{i}\right\}_{i \in I}\right\rangle=\sum_{i \in I}\left\langle x_{i}, y_{i}\right\rangle$, where $\left\{x_{i}\right\}_{i \in I},\{y\}_{i \in I} \in l^{2}\left(\left\{W_{i}\right\}_{i \in I}\right)$

Lemma 1.5. [2]. Let H and K two Hilbert \mathcal{A}-modules and $T \in \operatorname{End}_{\mathcal{A}}^{*}(H, K)$. Then the following statements are equivalent:
(i) T is surjective.
(ii) T^{*} is bounded below with respect to norm, i.e., there is $m>0$ such that $\left\|T^{*} x\right\| \geq m\|x\|$ for all $x \in K$.
(iii) T^{*} is bounded below with respect to the inner product, i.e., there is $m^{\prime}>0$ such that $\left\langle T^{*} x, T^{*} x\right\rangle \geq m^{\prime}\langle x, x\rangle$ for all $x \in K$.

Lemma 1.6. [1]. Let U and H two Hilbert \mathcal{A}-modules and $T \in \operatorname{End}_{\mathcal{A}}^{*}(U, H)$. Then:
(i) If T is injective and T has closed range, then the adjointable map $T^{*} T$ is invertible and

$$
\left\|\left(T^{*} T\right)^{-1}\right\|^{-1} \leq T^{*} T \leq\|T\|^{2}
$$

(ii) If T is surjective, then the adjointable map $T T^{*}$ is invertible and

$$
\left\|\left(T T^{*}\right)^{-1}\right\|^{-1} \leq T T^{*} \leq\|T\|^{2}
$$

Lemma 1.7. [2] Let H be a Hilbert \mathcal{A}-module over a C^{*}-algebra \mathcal{A}, and $T \in \operatorname{End}_{\mathcal{A}}^{*}(H)$ such that $T^{*}=T$. The following statements are equivalent:
(i) T is surjective.
(ii) There are $m, M>0$ such that $m\|x\| \leq\|T x\| \leq M\|x\|$, for all $x \in H$.
(iii) There are $m^{\prime}, M^{\prime}>0$ such that $m^{\prime}\langle x, x\rangle \leq\langle T x, T x\rangle \leq M^{\prime}\langle x, x\rangle$ for all $x \in H$.

2. g-fusion frame in Hilbert C^{*}-modules

We begin this section with the following lemma:

Lemma 2.1. Let $\left\{H_{i}\right\}_{i \in I}$ be a sequence of orthogonally complemented closed submodules of H and $T \in E n d_{\mathcal{A}}^{*}(H)$ invertible, if $T^{*} T H_{i} \subseteq H_{i}$ for each $i \in I$, then $\left\{T H_{i}\right\}_{i \in I}$ is a sequence of orthogonally complemented closed submodules and $P_{H_{i}} T^{*}=P_{H_{i}} T^{*} P_{T H_{i}}$.

Proof. Firstly for each $i \in I, T: H_{i} \rightarrow T H_{i}$ is invertible, so each $T H_{i}$ is a closed submodule of H. We show that $H=T H_{i} \oplus T\left(H_{i}^{\perp}\right)$. Since $H=T H$, then for each $x \in H$, there exists $y \in H$ sutch that $x=T y$. On the other hand $y=u+v$, for some $u \in H_{i}$ and $v \in H_{i}^{\perp}$. Hence $x=T u+T v$, where $T u \in T H_{i}$ and $T v \in T\left(H_{i}^{\perp}\right)$, plainly $T H_{i} \cap T\left(H_{i}^{\perp}\right)=(0)$, therefore $H=T H_{i} \oplus T\left(H_{i}^{\perp}\right)$. Hence for every $y \in H_{i}, z \in H_{i}^{\perp}$ we have $T^{*} T y \in H_{i}$ and therefore $\langle T y, T z\rangle=\left\langle T^{*} T y, z\right\rangle=0$, so $T\left(H_{i}^{\perp}\right) \subset\left(T H_{i}\right)^{\perp}$ and consequently $T\left(H_{i}^{\perp}\right)=\left(T H_{i}\right)^{\perp}$ witch implies that $T H_{i}$ is orthogonally complemented.
Let $x \in H$ we have $x=P_{T H_{i}} x+y$, for some $y \in\left(T H_{i}\right)^{\perp}$, then $T^{*} x=T^{*} P_{T H_{i}} x+T^{*} y$. Let $v \in H_{i}$ then $\left\langle T^{*} y, v\right\rangle=\langle y, T v\rangle=0$ then $T^{*} y \in H_{i}^{\perp}$ and we have $P_{H_{i}} T^{*} x=P_{H_{i}} T^{*} P_{T H_{i}} x+P_{H_{i}} T^{*} y$, then $P_{H_{i}} T^{*} x=P_{H_{i}} T^{*} P_{T H_{i}} x$ thus implies that for each $i \in I$ we have $P_{H_{i}} T^{*}=P_{H_{i}} T^{*} P_{T H_{i}}$.

Definition 2.2. Let $\left\{H_{i}\right\}_{i \in I}$ be a sequence of closed orthogonally complemented submodules of $H,\left\{v_{i}\right\}_{i \in I}$ be a familly of positive weights in \mathcal{A}, i.e., each v_{i} is a positive invertible element from the center of the C^{*}-algebra \mathcal{A} and $\Lambda_{i} \in \operatorname{End}_{\mathcal{A}}^{*}\left(H, W_{i}\right)$ for all $i \in I$. We say that $\Lambda=\left\{H_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ is a g-fusion frame for H if and only if there exists two constants $0<A \leq$ $B<\infty$ such that

$$
\begin{equation*}
A\langle x, x\rangle \leq \sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle \leq B\langle x, x\rangle, \quad \forall x \in H \tag{2.1}
\end{equation*}
$$

The constants A and B are called the lower and upper bounds of g-fusion frame, respactively. If $A=B$ then Λ is called tight g-fusion frame and if $A=B=1$ then we say Λ is a Parseval g-fusion frame. If Λ satisfies the inequality

$$
\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle \leq B\langle x, x\rangle, \quad \forall x \in H
$$

then it is called a g-fusion Bessel sequence with bound B in H.

Lemma 2.3. let $\Lambda=\left(H_{i}, \Lambda_{i}, v_{i}\right)_{i \in I}$ be a g-fusion Bessel sequence for H with bound B. Then for each sequence $\left\{x_{i}\right\}_{i \in I} \in l^{2}\left(\left\{W_{i}\right\}_{i \in I}\right)$, the series $\sum_{i \in I} v_{i} P_{H_{i}} \Lambda_{i}^{*} x_{i}$ is converge unconditionally.

Proof. let J be a finite subset of I, then

$$
\begin{aligned}
\left\|\sum_{i \in J} v_{i} P_{H_{i}} \Lambda_{i}^{*} x_{i}\right\| & =\sup _{\|y\|=1}\left\|\left\langle\sum_{i \in J} v_{i} P_{H_{i}} \Lambda_{i}^{*} x_{i}, y\right\rangle\right\| \\
& \leq\left\|\sum_{i \in J}\left\langle x_{i}, x_{i}\right\rangle\right\|^{\frac{1}{2}} \sup _{\|y\|=1}\left\|\sum_{i \in J} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} y, \Lambda_{i} P_{H_{i}} y\right\rangle\right\|^{\frac{1}{2}} \\
& \leq \sqrt{B}\left\|\sum_{i \in J}\left\langle x_{i}, x_{i}\right\rangle\right\|^{\frac{1}{2}}
\end{aligned}
$$

And it follows that $\sum_{j \in I} v_{j} P_{W_{j}} \Lambda_{j}^{*} f_{j}$ is unconditionally convergent in H.
Now, we can define the synthesis operator by lemma 2.3

Definition 2.4. let $\Lambda=\left(H_{i}, \Lambda_{i}, v_{i}\right)_{i \in I}$ be a g-fusion Bessel sequence for H. Then the operator $T_{\Lambda}: l^{2}\left(\left\{W_{i}\right\}_{i \in I}\right) \rightarrow H$ defined by

$$
T_{\Lambda}\left(\left\{x_{i}\right\}_{i \in I}\right)=\sum_{i \in I} v_{i} P_{W_{i}} \Lambda_{i}^{*} x_{i}, \quad \forall\left\{x_{i}\right\}_{i \in I} \in l^{2}\left(\left\{W_{i}\right\}_{i \in I}\right)
$$

Is called synthesis operator. We say the adjoint T_{Λ}^{*} of the synthesis operator the analysis operator and it is defined by $T_{\Lambda}^{*}: \mathcal{H} \rightarrow l^{2}\left(\left\{W_{i}\right\}_{i \in I}\right)$ such that

$$
T_{\Lambda}^{*}(x)=\left\{v_{i} \Lambda_{i} P_{H_{i}}(x)\right\}_{i \in I}, \quad \forall x \in H
$$

The operator $S_{\Lambda}: H \rightarrow H$ defined by

$$
S_{\Lambda} x=T_{\Lambda} T_{\Lambda}^{*} x=\sum_{j \in I} v_{i}^{2} P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{H_{i}}(x), \quad \forall x \in H
$$

Is called g-fusion frame operator. It can be easily verify that

$$
\begin{equation*}
\left\langle S_{\Lambda} x, x\right\rangle=\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}}(x), \Lambda_{i} P_{H_{i}}(x)\right\rangle, \quad \forall x \in H \tag{2.2}
\end{equation*}
$$

Furthermore, if Λ is a g-fusion frame with bounds A and B, then

$$
A\langle x, x\rangle \leq\left\langle S_{\Lambda} x, x\right\rangle \leq B\langle x, x\rangle, \quad \forall x \in H
$$

It easy to see that the operator S_{Λ} is bounded, self-adjoint, positive, now we proof the inversibility of S_{Λ}. Let $x \in H$ we have

$$
\left\|T_{\Lambda}^{*}(x)\right\|=\left\|\left\{v_{i} \Lambda_{i} P_{W_{i}}(x)\right\}_{i \in I}\right\|=\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}}(x), \Lambda_{i} P_{H_{i}}(x)\right\rangle\right\|^{\frac{1}{2}}
$$

Since Λ is g-fusion frame then

$$
\sqrt{A}\|\langle x, x\rangle\|^{\frac{1}{2}} \leq\left\|T_{\Lambda}^{*} x\right\|
$$

Then

$$
\sqrt{A}\|x\| \leq\left\|T_{\Lambda}^{*} x\right\|
$$

Frome lemma 1.5, T_{Λ} is surjective and by lemma $1.6, T_{\Lambda} T_{\Lambda}^{*}=S_{\Lambda}$ is invertible. We now, $A I_{H} \leq S_{\Lambda} \leq B I_{H}$ and this gives $B^{-1} I_{H} \leq S_{\Lambda}^{-1} \leq A^{-1} I_{H}$

Theorem 2.5. Let H be a Hilbert \mathcal{A}-module over C^{*}-algebra. Then $\Lambda=\left(H_{i}, \Lambda_{i}, v_{i}\right)_{i \in I}$ is a g-fusion frame for H if and only if there exist two constants $0<A \leq B<\infty$ such that for all $x \in H$

$$
A\|\langle x, x\rangle\| \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle\right\| \leq B\|\langle x, x\rangle\| .
$$

Proof. Suppose Λ is g-fusion frame for H, then for all $x \in H$,

$$
A\|\langle x, x\rangle\| \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle\right\| \leq B\|\langle x, x\rangle\|
$$

Conversely, for each $x \in H$ we have

$$
\begin{aligned}
\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle\right\| & =\left\|\sum_{i \in I}\left\langle v_{i} \Lambda_{i} P_{H_{i}} x, v_{i} \Lambda_{i} P_{H_{i}} x\right\rangle\right\| \\
& =\left\|\left\langle\left\{v_{i} \Lambda_{i} P_{H_{i}} x\right\}_{i \in I},\left\{v_{i} \Lambda_{i} P_{H_{i}} x\right\}_{i \in I}\right\rangle\right\| \\
& =\left\|\left\{v_{i} \Lambda_{i} P_{H_{i}} x\right\}_{i \in I}\right\|^{2} .
\end{aligned}
$$

We define the operator $L: \mathcal{H} \rightarrow \oplus_{i \in I} W_{i}$ by $L(x)=\left\{v_{i} \Lambda_{i} P_{H_{i}} x\right\}_{i \in I}$, then

$$
\|L(x)\|^{2}=\left\|\left(v_{i} \Lambda_{i} P_{H_{i}} x\right)_{i \in I}\right\|^{2} \leq B\|x\|^{2} .
$$

L is \mathcal{A}-linear bounded operator, then there exist $C>0$ sutch that

$$
\langle L(x), L(x)\rangle \leq C\langle x, x\rangle, \quad \forall x \in \mathcal{H}
$$

So

$$
\sum_{j \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle \leq C\langle x, x\rangle, \quad \forall x \in H .
$$

Therefore Λ is a g-fusion Bessel sequence for \mathcal{H}. Now we cant define the g-fusion frame operator S_{Λ} on \mathcal{H}. So

$$
\sum_{j \in J} v_{j}^{2}\left\langle\Lambda_{j} P_{W_{j}} x, \Lambda_{j} P_{W_{j}} x\right\rangle=\left\langle S_{\Lambda} x, x\right\rangle, \quad \forall x \in H
$$

Since S_{Λ} is positive, self-adjoint, then

$$
\left\langle S_{\Lambda}^{\frac{1}{2}} x, S_{\Lambda}^{\frac{1}{2}} x\right\rangle=\left\langle S_{\Lambda} x, x\right\rangle, \quad \forall x \in H
$$

That implies

$$
A\|\langle x, x\rangle\| \leq\left\|\left\langle S_{\Lambda}^{\frac{1}{2}} x, S_{\Lambda}^{\frac{1}{2}} x\right\rangle\right\| \leq B\|\langle x, x\rangle\|, \quad \forall x \in H
$$

Frome lemma 1.7 there exist two canstants $A^{\prime}, B^{\prime}>0$ such that

$$
A^{\prime}\langle x, x\rangle \leq\left\langle S_{\Lambda}^{\frac{1}{2}} x, S_{\Lambda}^{\frac{1}{2}} x\right\rangle \leq B^{\prime}\langle x, x\rangle, \quad \forall f \in H .
$$

So

$$
A^{\prime}\langle x, x\rangle \leq \sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle \leq B^{\prime}\langle x, x\rangle, \quad \forall x \in H .
$$

Hence Λ is a g-fusion frame for H.

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI
 Fakhr-dine Nhari, Mohamed Rossa, Youssef Aribou

3. Tensor product of g-fusion frame in Hilbert C^{*}-modules

Suppose that \mathcal{A}, \mathcal{B} are unitals C^{*}-algebras and we take $\mathcal{A} \otimes \mathcal{B}$ as the completion of $\mathcal{A} \otimes_{\text {alg }} \mathcal{B}$ with the spatial norm. $\mathcal{A} \otimes \mathcal{B}$ is the spatial tensor product of \mathcal{A} and \mathcal{B}, also suppose that H is a Hilbert \mathcal{A}-module and K is a Hilbert \mathcal{B}-module. We want to define $H \otimes K$ as a Hilbert $(\mathcal{A} \otimes \mathcal{B})-$ module. Start by forming the algebraic tensor product $H \otimes_{\text {alg }} K$ of the vector spaces H, K (over $\mathbb{C})$. This is a left module overh $\left(\mathcal{A} \otimes_{\text {alg }} \mathcal{B}\right)$ (the module action being given by $(a \otimes b)(x \otimes y)=a x \otimes b y(a \in \mathcal{A}, b \in \mathcal{B}, x \in H, y \in K))$. For $\left(x_{1}, x_{2} \in H, y_{1}, y_{2} \in K\right)$ we define $\left\langle x_{1} \otimes y_{1}, x_{2} \otimes y_{2}\right\rangle_{\mathcal{A} \otimes \mathcal{B}}=\left\langle x_{1}, x_{2}\right\rangle_{\mathcal{A}} \otimes\left\langle y_{1}, y_{2}\right\rangle_{\mathcal{B}}$. We also know that for $z=\sum_{i=1}^{n} x_{i} \otimes y_{i}$ in $H \otimes_{\text {alg }} K$ we have $\langle z, z\rangle_{\mathcal{A} \otimes \mathcal{B}}=\sum_{i, j}\left\langle x_{i}, x_{j}\right\rangle_{\mathcal{A}} \otimes\left\langle y_{i}, y_{j}\right\rangle_{\mathcal{B}} \geq 0$ and $\langle z, z\rangle_{\mathcal{A} \otimes \mathcal{B}}=0$ iff $z=0$. This extends by linearity to an $\left(\mathcal{A} \otimes_{\text {alg }} \mathcal{B}\right)$-valued sesquilinear from on $H \otimes_{\text {alg }} K$, which makes $H \otimes_{\text {alg }} K$ into a semi-inner-product module over the pre- $C^{*}-\operatorname{algebra}\left(\mathcal{A} \otimes_{a l g} \mathcal{B}\right)$. The semi-inner-product on $H \otimes_{a l g} K$ is actually an inner product. see [10]. Then $H \otimes_{a l g} K$ is an inner-product module over the pre- C^{*}-algebra $\left(\mathcal{A} \otimes_{\text {alg }} \mathcal{B}\right)$, and we can perform the double completion discussed in chapter 1 of [10] to conclude that the completion $H \otimes K$ of $\mathcal{A} \otimes_{\text {alg }} \mathcal{B}$ is a $\operatorname{Hilbert}(\mathcal{A} \otimes \mathcal{B})$-module. We call $H \otimes K$ the exterior tensor product of H and K. With H, K as above, we wish to investigate the adjointable operators on $H \otimes K$. Suppose that $S \in E n d_{\mathcal{A}}^{*}(H)$ and $T \in E n d_{\mathcal{B}}^{*}(K)$. We define a linear operator $S \otimes T$ on $H \otimes K$ by $S \otimes T(x \otimes y)=S x \otimes T y(x \in H, y \in K)$. It is a routine verification that is $S^{*} \otimes T^{*}$ is the adjoint of $S \otimes T$, so in fact $S \otimes T \in E n d_{\mathcal{A} \otimes \mathcal{B}}^{*}(H \otimes K)$. We note that if $a \in \mathcal{A}^{+}$and $b \in \mathcal{B}^{+}$, then $a \otimes b \in(\mathcal{A} \otimes \mathcal{B})^{+}$. Plainly if a, b are Hermitian elements of \mathcal{A} and $a \leq b$, then for every positive element x of \mathcal{B}, we have $a \otimes x \geq b \otimes x$.

Definition 3.1. Let $\left\{v_{i}\right\}_{i \in I},\left\{w_{j}\right\}_{j \in J}$ be two families of positive weights, i.e., each v_{i} and w_{j} are positive invertible elements of \mathcal{A}, and $\Lambda_{i} \otimes \Gamma_{j} \in E n d_{\mathcal{A}}^{*}\left(H \otimes K, W_{i} \otimes V_{j}\right)$ for each $i \in I$ and $j \in J$. Then the family $\Lambda \otimes \Gamma=\left\{H_{i} \otimes K_{j}, \Lambda_{i} \otimes \Gamma_{j}, v_{i} w_{j}\right\}_{i, j}$ is saide to be a generalized fusion frame or g-fusion frame for $H \otimes K$ with respect to $\left\{H_{i} \otimes K_{j}\right\}_{i, j}$ if there exist constants $0<A \leq B<\infty$ such that for all $x \otimes y \in H \otimes K$
$A\langle x \otimes y, x \otimes y\rangle \leq \sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}(x \otimes y),\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}(x \otimes y)\right\rangle \leq B\langle x \otimes y, x \otimes y\rangle$
where $P_{H_{i} \otimes K_{j}}$ is the orthogonal projection of $H \otimes K$ onto $H_{i} \otimes K_{j}$. The constants A and B are called the frame bounds of $\Lambda \otimes \Gamma$. If $A=B$ then it is called a tight g-fusion frame. If the family $\Lambda \otimes \Gamma$ satisfies the inequality, for each $x \otimes y \in H \otimes K$

$$
\sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}(x \otimes y),\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}(x \otimes y)\right\rangle \leq B\langle x \otimes y, x \otimes y\rangle
$$

then it is called a g-fusion Bessel sequence in $H \otimes K$ with bound B.

Definition 3.2. For $i \in I$ and $j \in J$, define the Hilbert $\mathcal{A} \otimes \mathcal{B}$-module

$$
l^{2}\left(\left\{W_{i} \otimes V_{j}\right\}\right)=\left\{\left\{x_{i} \otimes y_{j}\right\}: x_{i} \otimes y_{j} \in W_{i} \otimes V_{j},\left\|\sum_{i, j}\left\langle x_{i} \otimes y_{j}, x_{i} \otimes y_{j}\right\rangle\right\|<\infty\right\}
$$

with the $\mathcal{A} \otimes \mathcal{B}$-valued inner product

$$
\begin{aligned}
\left\langle\left\{x_{i} \otimes y_{j}\right\},\left\{x_{i}^{\prime} \otimes y_{j}^{\prime}\right\}\right\rangle & =\sum_{i, j}\left\langle x_{i} \otimes y_{j}, x_{i}^{\prime} \otimes y_{j}^{\prime}\right\rangle \\
& =\sum_{i, j}\left\langle x_{i}, x_{i}^{\prime}\right\rangle_{W_{i}} \otimes\left\langle y_{j}, y_{j}^{\prime}\right\rangle_{V_{j}} \\
& =\left(\sum_{i \in I}\left\langle x_{i}, x_{i}^{\prime}\right\rangle_{W_{i}}\right) \otimes\left(\sum_{j \in J}\left\langle y_{j}, y_{j}^{\prime}\right\rangle_{V_{j}}\right) \\
& =\left\langle\left\{x_{i}\right\}_{i \in I},\left\{x_{i}^{\prime}\right\}_{i \in I}\right\rangle_{l^{2}\left(\left\{W_{i}\right\}_{i \in I}\right)} \otimes\left\langle\left\{y_{j}\right\}_{j \in J},\left\{y_{j}\right\}_{j \in J}\right\rangle_{l^{2}\left(\left\{V_{j}\right\}_{j \in J}\right)} .
\end{aligned}
$$

Theorem 3.3. The families $\Lambda=\left\{H_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ and $\Gamma=\left\{K_{j}, \Gamma_{j}, w_{j}\right\}_{j \in J}$ are g-fusion frames for H and K with respect to $\left\{W_{i}\right\}_{i \in I}$ and $\left\{V_{j}\right\}_{j \in J}$, respectively if and only if the family $\Lambda \otimes \Gamma=$ $\left\{H_{i} \otimes K_{j}, \Lambda_{i} \otimes \Gamma_{j}, v_{i} w_{j}\right\}_{i, j}$ is a g-fusion frame for $H \otimes K$ with respect $\left\{W_{i} \otimes V_{j}\right\}_{i, j}$.

Proof. Suppose that Λ and Γ are g-fusion frame for H and K. Then there exist positive constants (A, B) and (C, D) such that

$$
\begin{aligned}
& A\|x\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle_{\mathcal{A}}\right\| \leq B\|x\|^{2}, \forall x \in H, \\
& C\|y\|^{2} \leq\left\|\sum_{j \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} y, \Gamma_{j} P_{K_{j}} y\right\rangle_{\mathcal{B}}\right\| \leq D\|y\|^{2}, \forall y \in K,
\end{aligned}
$$

then,

$$
A C\|x\|^{2}\|y\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle_{\mathcal{A}}\right\|\left\|\sum_{j \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} y, \Gamma_{j} P_{K_{j}} y\right\rangle_{\mathcal{B}}\right\| \leq B D\|x\|^{2}\|y\|^{2}
$$

hence,

$$
A C\|x \otimes y\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle_{\mathcal{A}} \otimes \sum_{j \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} y, \Gamma_{j} P_{K_{j}} y\right\rangle_{\mathcal{B}}\right\| \leq B D\|x \otimes y\|^{2}
$$

so,

$$
A C\|x \otimes y\|^{2} \leq\left\|\sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\Lambda_{i} P_{H_{i}} x \otimes \Gamma_{j} P_{K_{j}} y, \Lambda_{i} P_{H_{i}} x \otimes \Gamma_{j} P_{K_{j}} y\right\rangle\right\| \leq B D\|x \otimes y\|^{2} .
$$

Therefore, for each $x \otimes y \in H \otimes K$
$A C\|x \otimes y\|^{2} \leq\left\|\sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}(x \otimes y),\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}(x \otimes y)\right\rangle\right\| \leq B D\|x \otimes y\|^{2}$,
we conclude that, $\Lambda \otimes \Gamma$ is a g-fusion frame for $H \otimes K$. Conversely, suppose that $\Lambda \otimes \Gamma$ is a g-fusion frame for $H \otimes K$, then there exist constants $A, B>0$ such that for all $x \otimes y \in$ $H \otimes K-\{0 \otimes 0\}$,

$$
A\|x \otimes y\|^{2} \leq\left\|\sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}(x \otimes y),\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}(x \otimes y)\right\rangle\right\| \leq B\|x \otimes y\|^{2},
$$

then,

$$
A\|x \otimes y\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle_{\mathcal{A}} \otimes \sum_{j \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} y, \Gamma_{j} P_{K_{j}} y\right\rangle_{\mathcal{B}}\right\| \leq B\|x \otimes y\|^{2}
$$

hence,

$$
A\|x\|^{2}\|y\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle_{\mathcal{A}}\right\|\left\|\sum_{j \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} y, \Gamma_{j} P_{K_{j}} y\right\rangle_{\mathcal{B}}\right\| \leq B\|x\|^{2}\|y\|^{2}
$$

So,

$$
\frac{A\|y\|^{2}}{\left\|\sum_{j \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} y, \Gamma_{j} P_{K_{j}} y\right\rangle_{\mathcal{B}}\right\|}\|x\|^{2} \leq\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle_{\mathcal{A}}\right\|,
$$

and

$$
\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle_{\mathcal{A}}\right\| \leq \frac{B\|y\|^{2}}{\left\|\sum_{j \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} y, \Gamma_{j} P_{K_{j}} y\right\rangle_{\mathcal{B}}\right\|}\|x\|^{2}
$$

Therefore, Λ is a g-fusion frame for H. Similarly, it can be schown that Γ is a g-fusion frame for K.

Definition 3.4. Let $\Lambda \otimes \Gamma=\left\{H_{i} \otimes K_{j}, \Lambda_{i} \otimes \Gamma_{j}, v_{i} w_{j}\right\}_{i, j}$ be a g-fusion frame for $H \otimes K$. The synthesis operator $T_{\Lambda \Gamma}: l^{2}\left(\left\{W_{i} \otimes V_{j}\right\}\right) \rightarrow H \otimes K$ is given by

$$
T_{\Lambda \Gamma}\left(\left\{x_{i} \otimes y_{j}\right\}\right)=\sum_{i, j} v_{i} w_{j} P_{H_{i} \otimes K_{j}}\left(\Lambda_{i} \otimes \Gamma_{j}\right)^{*}\left(x_{i} \otimes y_{j}\right), \quad \forall\left\{x_{i} \otimes y_{j}\right\} \in l^{2}\left(\left\{W_{i} \otimes V_{j}\right\}\right)
$$

And the frame operator $S_{\Lambda \otimes \Gamma}: H \otimes K \rightarrow H \otimes K$ is described by

$$
S_{\Lambda \otimes \Gamma}(x \otimes y)=\sum_{i, j}\left(v_{i} w_{j}\right)^{2} P_{H_{i} \otimes K_{j}}\left(\Lambda_{i} \otimes \Gamma_{j}\right)^{*}\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}(x \otimes y), \quad \forall x \otimes y \in H \otimes K
$$

Theorem 3.5. If S_{Λ}, S_{Γ} and $S_{\Lambda \otimes \Gamma}$ are the associated g-fusion frame operators and T_{Λ}, T_{Γ} and $T_{\Lambda \otimes \Gamma}$ are the synthesis operators of g-fusion frames Λ, Γ and $\Lambda \otimes \Gamma$ for H, K and $H \otimes K$, respectively, then $S_{\Lambda \otimes \Gamma}=S_{\Lambda} \otimes S_{\Gamma}, S_{\Lambda \otimes \Gamma}^{-1}=S_{\Lambda}^{-1} \otimes S_{\Gamma}^{-1}$, and , $T_{\Lambda \otimes \Gamma}=T_{\Lambda} \otimes T_{\Gamma}, T_{\Lambda \otimes \Gamma}^{*}=T_{\Lambda}^{*} \otimes T_{\Gamma}^{*}$.

Proof. Let each $x \otimes y \in H \otimes K$, we have

$$
\begin{aligned}
S_{\Lambda \otimes \Gamma}(x \otimes y) & =\sum_{i, j} v_{i}^{2} w_{j}^{2} P_{H_{i} \otimes K_{j}}\left(\Lambda_{i} \otimes \Gamma_{j}\right)^{*}\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}(x \otimes y) \\
& =\sum_{i, j} v_{i}^{2} w_{j}^{2}\left(P_{H_{i} \otimes K_{j}}\right)\left(\Lambda_{i} \otimes \Gamma_{j}\right)^{*}\left(\Lambda_{i} \otimes \Gamma_{j}\right)\left(P_{H_{i}} \otimes P_{K_{j}}\right)(x \otimes y) \\
& =\sum_{i, j} v_{i}^{2} w_{j}^{2}\left(P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{H_{i}} x\right) \otimes\left(P_{K_{j}} \Gamma_{j}^{*} \Gamma_{j} P_{K_{j}} y\right) \\
& =\left(\sum_{i \in I} v_{i}^{2} P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{H_{i}} x\right) \otimes\left(\sum_{j \in J} w_{j}^{2} P_{K_{j}} \Gamma_{j}^{*} \Gamma_{j} P_{K_{j}} y\right) \\
& =S_{\Lambda} x \otimes S_{\Gamma} y \\
& =\left(S_{\Lambda} \otimes S_{\Gamma}\right)(x \otimes y) .
\end{aligned}
$$

Then, $S_{\Lambda \otimes \Gamma}=S_{\Lambda} \otimes S_{\Gamma}$, so $S_{\Lambda \otimes \Gamma}^{-1}=S_{\Lambda}^{-1} \otimes S_{\Gamma}^{-1}$.
On the other hand, for each $\left\{x_{i} \otimes y_{j}\right\} \in l^{2}\left(\left\{W_{i} \otimes V_{j}\right\}\right)$, we have

$$
\begin{aligned}
T_{\Lambda \otimes \Gamma}\left(\left\{x_{i} \otimes y_{j}\right\}\right) & =\sum_{i, j} v_{i} w_{j} P_{H_{i} \otimes K_{j}}\left(\Lambda_{i} \otimes \Gamma_{j}\right)^{*}\left(x_{i} \otimes y_{j}\right) \\
& =\left(\sum_{i \in I} v_{i} P_{H_{i}} \Lambda_{i}^{*} x_{i}\right) \otimes\left(\sum_{j \in J} w_{j} P_{K_{j}} \Gamma_{j}^{*} y_{j}\right) \\
& =T_{\Lambda}\left(\left\{x_{i}\right\}\right) \otimes T_{\Gamma}\left(\left\{y_{j}\right\}\right) \\
& =\left(T_{\Lambda} \otimes T_{\Gamma}\right)\left(\left\{x_{i} \otimes y_{j}\right\}\right) .
\end{aligned}
$$

this shows that $T_{\Lambda \otimes \Gamma}=T_{\Lambda} \otimes T_{\Gamma}$, hence $T_{\Lambda \otimes \Gamma}^{*}=T_{\Lambda}^{*} \otimes T_{\Gamma}^{*}$.

Theorem 3.6. Let $\Lambda=\left\{H_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}$ and $\Gamma=\left\{K_{j}, \Gamma_{j}, w_{j}\right\}_{j \in J}$ be g-fusion frames for H and K with $g-$ fusion frame operators S_{Λ} and S_{Γ}, respectively. Then $\theta=\left\{S_{\Lambda \otimes \Gamma}^{-1}\left(H_{i} \otimes K_{j}\right),\left(\Lambda_{i} \otimes\right.\right.$ $\left.\left.\Gamma_{j}\right) P_{H_{i} \otimes K_{j}} S_{\Lambda \otimes \Gamma}^{-1}, v_{i} w_{j}\right\}_{i, j}$ is a g-fusion frame for $H \otimes K$.

Proof. Let (A, B) and (C, D) be the g-fusion frame bounds of Λ and Γ, respectively. Now, we have for each $x \otimes y \in H \otimes K$,

$$
\begin{aligned}
& \left\|\sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}} S_{\Lambda \otimes \Gamma}^{-1} P_{S_{\Lambda \otimes \Gamma}^{-1}\left(H_{i} \otimes K_{j}\right)}(x \otimes y),\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}} S_{\Lambda \otimes \Gamma}^{-1} P_{S_{\Lambda \otimes \Gamma}^{-1}\left(H_{i} \otimes K_{j}\right)}(x \otimes y)\right\rangle\right\| \\
& =\| \sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\Lambda_{i} \otimes \Gamma_{j} P_{H_{i} \otimes K_{j}} S_{\Lambda}^{-1} \otimes S_{\Gamma}^{-1} P_{S_{\Lambda}^{-1} H_{i}} \otimes P_{S_{\Gamma}^{-1} K_{j}}(x \otimes y),\right. \\
& \left.\qquad \Lambda_{i} \otimes \Gamma_{j} P_{H_{i} \otimes K_{j}} S_{\Lambda}^{-1} \otimes S_{\Gamma}^{-1} P_{S_{\Lambda}^{-1} H_{i}} \otimes P_{S_{\Gamma}^{-1} K_{j}}(x \otimes y)\right\rangle \| \\
& =\| \sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\Lambda_{i} \otimes \Gamma_{j} P_{H_{i}} \otimes P_{K_{j}} S_{\Lambda}^{-1} P_{S_{\Lambda}^{-1} H_{i}} \otimes S_{\Gamma}^{-1} P_{S_{\Gamma}^{-1} K_{j}}(x \otimes y),\right. \\
& \left.\quad \Lambda_{i} \otimes \Gamma_{j} P_{H_{i}} \otimes P_{K_{j}} S_{\Lambda}^{-1} P_{S_{\Lambda}^{-1} H_{i}} \otimes S_{\Gamma}^{-1} P_{S_{\Gamma}^{-1} K_{j}}(x \otimes y)\right\rangle \| \\
& =\left\|\sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} P_{S_{\Lambda}^{-1} H_{i}} x \otimes \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} P_{S_{\Gamma}^{-1} K_{j}} y, \Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} P_{S_{\Lambda}^{-1} H_{i}} x \otimes \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} P_{S_{\Gamma}^{-1} K_{j}} y\right\rangle\right\| \\
& =\left\|\sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} x \otimes \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} y, \Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} x \otimes \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} y\right\rangle\right\| \\
& =\left\|\sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} x, \Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} x\right\rangle_{\mathcal{A}} \otimes\left\langle\Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} y, \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} y\right\rangle_{\mathcal{B}}\right\| \\
& =\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} x, \Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} x\right\rangle_{\mathcal{A}}\right\|\left\|\sum_{i \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} y, \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} y\right\rangle_{\mathcal{B}}\right\| \\
& \leq B\left\|S_{\Lambda}^{-1} x\right\|^{2} D\left\|S_{\Gamma}^{-1} y\right\|^{2} \\
& \leq \frac{B D}{(A C)^{2}}\|x \otimes y\|^{2} .
\end{aligned}
$$

On the other hand for each $x \otimes y \in H \otimes K$,

$$
\begin{aligned}
\|x \otimes y\|^{4}= & \left\|\langle x, x\rangle_{\mathcal{A}}\right\|^{2}\left\|\langle y, y\rangle_{\mathcal{B}}\right\|^{2} \\
= & \left\|\left\langle\sum_{i \in I} v_{i}^{2} P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} x, x\right\rangle_{\mathcal{A}}\right\|^{2}\left\|\left\langle\sum_{i \in J} w_{j}^{2} P_{K_{j}} \Gamma_{j}^{*} \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} y, y\right\rangle_{\mathcal{B}}\right\|^{2} \\
= & \left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} x, \Lambda_{i} P_{H_{i}} x\right\rangle_{\mathcal{A}}\right\|^{2}\left\|\sum_{j \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} S^{-1} y, \Gamma_{j} P_{K_{j}} y\right\rangle_{\mathcal{B}}\right\|^{2} \\
\leq & \left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} x, \Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} x\right\rangle_{\mathcal{A}}\right\|\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle_{\mathcal{A}}\right\| \\
& \left\|\sum_{j \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} y, \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} y\right\rangle_{\mathcal{B}}\right\|\left\|\sum_{j \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} y, \Gamma_{j} P_{K_{j}} y\right\rangle_{\mathcal{B}}\right\| \\
\leq & B D\|x\|^{2}\|y\|^{2}\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} P_{S_{\Lambda}^{-1} H_{i}} x, \Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} P_{S_{\Lambda}^{-1} H_{i}} x\right\rangle_{\mathcal{A}}\right\| \\
\quad & \left\|\sum_{j \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} P_{S_{\Gamma}^{-1} K_{j}} y, \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} P_{S_{\Gamma}^{-1} K_{j}} y\right\rangle_{\mathcal{B}}\right\| \\
= & B D\|x \otimes y\|^{2} \| \sum_{i, j}\left(v_{i} w_{j}\right)^{2}\left\langle\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}} S_{\Lambda \otimes \Gamma}^{-1} P_{S_{\Lambda \otimes \Gamma}^{-1}\left(H_{i} \otimes K_{j}\right)}(x \otimes y) \|,\right.
\end{aligned}
$$

hence,

$$
\frac{1}{B D}\|x \otimes y\|^{2} \leq \| \sum_{i, j}\left(v_{i} w_{j}\right)^{2}\left\langle\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}} S_{\Lambda \otimes \Gamma}^{-1} P_{S_{\Lambda \otimes \Gamma}^{-1}\left(H_{i} \otimes K_{j}\right)}(x \otimes y) \| .\right.
$$

Therefore, θ is a g-fusion frame for $H \otimes K$.
Proposition 3.7. For the g-fusion frame θ, frame operator is $S_{\Lambda \otimes \Gamma}^{-1}$.
Proof. We put $G=\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}} S_{\Lambda \otimes \Gamma}^{-1}$, then

$$
\begin{aligned}
G^{*} G & =\left(\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}} S_{\Lambda \otimes \Gamma}^{-1}\right)^{*}\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}} S_{\Lambda \otimes \Gamma}^{-1} \\
& =\left(S_{\Lambda}^{-1} \otimes S_{\Gamma}^{-1}\right)\left(P_{H_{i}} \otimes P_{K_{j}}\right)\left(\Lambda_{i}^{*} \otimes \Gamma_{j}^{*}\right)\left(\Lambda_{i} \otimes \Gamma_{j}\right)\left(P_{H_{i}} \otimes P_{K_{j}}\right)\left(S_{\Lambda}^{-1} \otimes S_{\Gamma}^{-1}\right) \\
& =S_{\Lambda}^{-1} P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} \otimes S_{\Gamma}^{-1} P_{K_{j}} \Gamma_{j}^{*} \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1}
\end{aligned}
$$

hence,

$$
\begin{aligned}
& P_{S_{\Lambda \otimes \Gamma}^{-1}\left(H_{i} \otimes K_{j}\right)} G^{*} G P_{S_{\Lambda}^{-1}\left(H_{i} \otimes K_{j}\right)} \\
& =\left(P_{S_{\Lambda}^{-1} H_{i}} \otimes P_{S_{\Gamma}^{-1} K_{j}}\right) G^{*} G\left(P_{S_{\Lambda}^{-1} H_{i}} \otimes P_{S_{\Gamma}^{-1} K_{j}}\right) \\
& =P_{S_{\Lambda}^{-1} H_{i}} S_{\Lambda}^{-1} P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} P_{S_{\Lambda}^{-1} H_{i}} \otimes P_{S_{\Gamma}^{-1} K_{j}} S_{\Gamma}^{-1} P_{K_{j}} \Gamma_{j}^{*} \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} P_{S_{\Gamma}^{-1} K_{j}} \\
& =\left(P_{H_{i}} S_{\Lambda}^{-1}\right)^{*} \Lambda_{i}^{*} \Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} \otimes\left(P_{K_{j}} S_{\Gamma}^{-1}\right)^{*} \Gamma_{j}^{*} \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} \\
& =S_{\Lambda}^{-1} P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} \otimes S_{\Gamma}^{-1} P_{K_{j}} \Gamma_{j}^{*} \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1}
\end{aligned}
$$

So, for each $x \otimes y \in H \otimes K$, we have

$$
\begin{aligned}
& \sum_{i, j} v_{i}^{2} w_{j}^{2} P_{S_{\Lambda \otimes \Gamma}^{-1}\left(H_{i} \otimes K_{j}\right)} G^{*} G P_{S_{\Lambda \otimes \Gamma}^{-1}\left(H_{i} \otimes K_{j}\right)}(x \otimes y) \\
& =\sum_{i, j} v_{i}^{2} w_{j}^{2}\left(S_{\Lambda}^{-1} P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} \otimes S_{\Gamma}^{-1} P_{K_{j}} \Gamma_{j}^{*} \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1}\right)(x \otimes y) \\
& =\left(\sum_{i \in I} v_{i}^{2} S_{\Lambda}^{-1} P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i} P_{H_{i}} S_{\Lambda}^{-1} x\right) \otimes\left(\sum_{j \in J} w_{j}^{2} S_{\Gamma}^{-1} P_{K_{j}} \Gamma_{j}^{*} \Gamma_{j} P_{K_{j}} S_{\Gamma}^{-1} y\right) \\
& =S_{\Lambda}^{-1} S_{\Lambda}\left(S_{\Lambda}^{-1} x\right) \otimes S_{\Gamma}^{-1} S_{\Gamma}\left(S_{\Gamma}^{-1} y\right) \\
& =S_{\Lambda}^{-1} x \otimes S_{\Gamma}^{-1} y \\
& =\left(S_{\Lambda}^{-1} \otimes S_{\Gamma}^{-1}\right)(x \otimes y) \\
& =S_{\Lambda \otimes \Gamma}^{-1}(x \otimes y)
\end{aligned}
$$

we conclude that the corresponding g-fusion frame for θ is $S_{\Lambda \otimes \Gamma}^{-1}$.
Theorem 3.8. Let $\Lambda=\left\{H_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}, \Lambda^{\prime}=\left\{H_{i}^{\prime}, \Lambda_{i}^{\prime}, v_{i}^{\prime}\right\}_{i \in I}$ be g-fusion Bessel sequences with bounds B, D, respectively in H and $\Gamma=\left\{K_{j}, \Gamma_{j}, w_{j}\right\}_{j \in J}, \Gamma^{\prime}=\left\{K_{j}^{\prime}, \Gamma_{j}^{\prime}, w_{j}^{\prime}\right\}_{j \in J}$ be g-fusion Bessel sequence with bounds E, F, respectively in K. Suppose $\left(T_{\Lambda}, T_{\Lambda^{\prime}}\right)$ and $\left(T_{\Gamma}, T_{\Gamma^{\prime}}\right)$ are their
synthesis operators such that $T_{\Lambda^{\prime}} T_{\Lambda}^{*}=I_{H}$ and $T_{\Gamma} T_{\Gamma^{\prime}}^{*}=I_{K}$. Then $\Lambda \otimes \Gamma=\left\{H_{i} \otimes K_{j}, \Lambda_{i} \otimes\right.$ $\left.\Gamma_{j}, v_{i} w_{j}\right\}_{i, j}$ and $\Lambda^{\prime} \otimes \Gamma^{\prime}=\left\{H_{i}^{\prime} \otimes K_{j}^{\prime}, \Lambda_{i}^{\prime} \otimes \Gamma_{j}^{\prime}, v_{i}^{\prime} w_{j}^{\prime}\right\}_{i, j}$ are g-fusion frames for $H \otimes K$.

Proof. By theorem 3.3, $\Lambda \otimes \Gamma$ and $\Lambda^{\prime} \otimes \Gamma^{\prime}$ are g-fusion Bessel sequences, respectively in $H \otimes K$. Now, for each $x \otimes y \in H \otimes K$,

$$
\begin{aligned}
\|x \otimes y\|^{4} & =\left\|\langle x, x\rangle_{\mathcal{A}}\right\|^{2}\left\|\langle y, y\rangle_{\mathcal{B}}\right\|^{2} \\
& =\left\|\left\langle T_{\Lambda}^{*} x, T_{\Lambda^{\prime}}^{*} x\right\rangle_{\mathcal{A}}\right\|^{2}\left\|\left\langle T_{\Gamma}^{*} y, T_{\Gamma^{\prime}}^{*} y\right\rangle_{\mathcal{B}}\right\|^{2} \\
& \leq\left\|T_{\Lambda}^{*} x\right\|^{2}\left\|T_{\Lambda^{\prime}}^{*} x\right\|^{2}\left\|T_{\Gamma}^{*} y\right\|^{2}\left\|T_{\Gamma^{\prime}}^{*} y\right\|^{2} \\
& \leq D F\|x\|^{2}\|y\|^{2}\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle_{\mathcal{A}}\right\|\left\|\sum_{j \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} y, \Gamma_{j} P_{K_{j}} y\right\rangle_{\mathcal{B}}\right\| \\
& =D F\|x \otimes y\|^{2}\left\|\sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle_{\mathcal{A}} \otimes\left\langle\Gamma_{j} P_{K_{j}} y, \Gamma_{j} P_{K_{j}} y\right\rangle_{\mathcal{B}}\right\| \\
& =D F\|x \otimes y\|^{2}\left\|\sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}(x \otimes y),\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}(x \otimes y)\right\rangle\right\|
\end{aligned}
$$

then,

$$
\frac{1}{D F}\|x \otimes y\|^{2} \leq\left\|\sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}(x \otimes y),\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}(x \otimes y)\right\rangle\right\| .
$$

Therefore, $\Lambda \otimes \Gamma$ is a g-fusion frame for $H \otimes K$. Similarly, it can be shown that $\Lambda^{\prime} \otimes \Gamma^{\prime}$ is also a g-fusion frame for $H \otimes K$.
4. Frame operator for a pair of g-fusion Bessel sequences in tensor product of Hilbert C^{*}-modules

Definition 4.1. Let $\Lambda \otimes \Gamma=\left\{H_{i} \otimes K_{j}, \Lambda_{i} \otimes \Gamma_{j}, v_{i} w_{j}\right\}_{i, j}$ and $\Lambda^{\prime} \otimes \Gamma^{\prime}=\left\{H_{i}^{\prime} \otimes K_{j}^{\prime}, \Lambda_{i}^{\prime} \otimes \Gamma_{j}^{\prime}, v_{i}^{\prime} w_{j}^{\prime}\right\}_{i, j}$ be two g-fusion Bessel sequences in $H \otimes K$. Then the operator $S: H \otimes K \rightarrow H \otimes K$ defined by for all $x \otimes y \in H \otimes K$,

$$
S(x \otimes y)=\sum_{i, j} v_{i} w_{j} v_{i}^{\prime} w_{j}^{\prime} P_{H_{i} \otimes K_{j}}\left(\Lambda_{i} \otimes \Gamma_{j}\right)^{*}\left(\Lambda_{i}^{\prime} \otimes \Gamma_{j}^{\prime}\right) P_{H_{i}^{\prime} \otimes K_{j}^{\prime}}(x \otimes y)
$$

is called the frame operator for the pair of g-fusion Bessel sequences $\Lambda \otimes \Gamma$ and $\Lambda^{\prime} \otimes \Gamma^{\prime}$.

Theorem 4.2. Let $S_{\Lambda \Lambda^{\prime}}$ and $S_{\Gamma \Gamma^{\prime}}$ be the frame operators for the pair of g-fusion Bessel sequences $\left(\Lambda=\left\{H_{i}, \Lambda_{i}, v_{i}\right\}_{i \in I}, \Lambda^{\prime}=\left\{H_{i}^{\prime}, \Lambda_{i}^{\prime}, v_{i}^{\prime}\right\}_{j \in J}\right)$ and $\left(\Gamma=\left\{K_{j}, \Gamma_{j}, w_{j}\right\}_{j \in J}\right.$, $\left.\Gamma^{\prime}=\left\{K_{j}^{\prime}, \Gamma_{j}^{\prime}, w_{j}^{\prime}\right\}_{j \in J}\right)$ in H and K, respectively. Then $S=S_{\Lambda \Lambda^{\prime}} \otimes S_{\Gamma \Gamma^{\prime}}$.

Proof. We have S is the associated frame operator for the pair of g-fusion Bessel sequences $\Lambda \otimes \Gamma$ and $\Lambda^{\prime} \otimes \Gamma^{\prime}$, for all $x \otimes y \in H \otimes K$,

$$
\begin{aligned}
S(x \otimes y) & =\sum_{i, j} v_{i} w_{j} v_{i}^{\prime} w_{j}^{\prime} P_{H_{i} \otimes K_{j}}\left(\Lambda_{i} \otimes \Gamma_{j}\right)^{*}\left(\Lambda_{i}^{\prime} \otimes \Gamma_{j}^{\prime}\right) P_{H_{i}^{\prime}} \otimes K_{j}^{\prime}(x \otimes y) \\
& =\sum_{i, j} v_{i} w_{j} v_{i}^{\prime} w_{j}^{\prime}\left(P_{H_{i}} \otimes P_{K_{j}}\right)\left(\Lambda_{i}^{*} \otimes \Gamma_{j}^{*}\right)\left(\Lambda_{i}^{\prime} \otimes \Gamma_{j}^{\prime}\right)\left(P_{H_{i}^{\prime}} \otimes P_{K_{j}^{\prime}}\right)(x \otimes y) \\
& =\left(\sum_{i \in I} v_{i} v_{i}^{\prime} P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i}^{\prime} P_{H_{i}^{\prime}} x\right) \otimes\left(\sum_{j \in J} w_{j} w_{j}^{\prime} P_{K_{j}} \Gamma_{j}^{*} \Gamma_{j}^{\prime} P_{K_{j}^{\prime}} y\right) \\
& =S_{\Lambda \Lambda^{\prime}} x \otimes S_{\Gamma \Gamma^{\prime}} y \\
& =\left(S_{\Lambda \Lambda^{\prime}} \otimes S_{\Gamma \Gamma^{\prime}}\right)(x \otimes y)
\end{aligned}
$$

Theorem 4.3. The frame operator for the pair of g-fusion Bessel sequences in $H \otimes K$ is bounded.

Proof. Let $x \otimes y \in H \otimes K$ and $x_{1} \otimes y_{1} \in H \otimes K$,

$$
\begin{aligned}
& \left\langle S(x \otimes y), x_{1} \otimes y_{1}\right\rangle \\
& =\left\langle\sum_{i, j} v_{i} w_{j} v_{i}^{\prime} w_{j}^{\prime} P_{H_{i} \otimes K_{j}}\left(\Lambda_{i} \otimes \Gamma_{j}\right)^{*}\left(\Lambda_{i}^{\prime} \otimes \Gamma_{j}^{\prime}\right) P_{H_{i}^{\prime} \otimes K_{j}^{\prime}}(x \otimes y), x_{1} \otimes y_{1}\right\rangle \\
& =\sum_{i, j} v_{i} w_{j} v_{i}^{\prime} w_{j}^{\prime}\left\langle P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i}^{\prime} P_{H_{i}^{\prime}} x \otimes P_{K_{j}} \Gamma_{j}^{*} \Gamma_{j}^{\prime} P_{K_{j}^{\prime}} y, x_{1} \otimes y_{1}\right\rangle \\
& =\sum_{i, j} v_{i} w_{j} v_{i}^{\prime} w_{j}^{\prime}\left\langle P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i}^{\prime} P_{H_{i}^{\prime}} x, x_{1}\right\rangle_{\mathcal{A}} \otimes\left\langle P_{K_{j}} \Gamma_{j}^{*} \Gamma_{j}^{\prime} P_{K_{j}^{\prime}} y, y_{1}\right\rangle_{\mathcal{B}} \\
& =\sum_{i \in I} v_{i} v_{i}^{\prime}\left\langle P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i}^{\prime} P_{H_{i}^{\prime}} x, x_{1}\right\rangle_{\mathcal{A}} \otimes \sum_{i \in J} w_{j} w_{j}^{\prime}\left\langle P_{K_{j}} \Gamma_{j}^{*} \Gamma_{j}^{\prime} P_{K_{j}^{\prime}} y, y_{1}\right\rangle_{\mathcal{B}},
\end{aligned}
$$

then,

$$
\begin{aligned}
& \left\|\left\langle S(x \otimes y), x_{1} \otimes y_{1}\right\rangle\right\| \\
& =\left\|\sum_{i \in I} v_{i} v_{i}^{\prime}\left\langle P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i}^{\prime} P_{H_{i}^{\prime}} x, x_{1}\right\rangle_{\mathcal{A}} \otimes \sum_{i \in J} w_{j} w_{j}^{\prime}\left\langle P_{K_{j}} \Gamma_{j}^{*} \Gamma_{j}^{\prime} P_{K_{j}^{\prime}} y, y_{1}\right\rangle_{\mathcal{B}}\right\| \\
& =\left\|\sum_{i \in I} v_{i} v_{i}^{\prime}\left\langle P_{H_{i}} \Lambda_{i}^{*} \Lambda_{i}^{\prime} P_{H_{i}^{\prime}} x, x_{1}\right\rangle_{\mathcal{A}}\right\|\left\|\sum_{i \in J} w_{j} w_{j}^{\prime}\left\langle P_{K_{j}} \Gamma_{j}^{*} \Gamma_{j}^{\prime} P_{K_{j}^{\prime}} y, y_{1}\right\rangle_{\mathcal{B}}\right\| \\
& \leq\left\|\sum_{i \in I}\left(v_{i}^{\prime}\right)^{2}\left\langle\Lambda_{i}^{\prime} P_{H_{i}^{\prime}} x, \Lambda_{i} P_{H_{i}^{\prime}} x\right\rangle_{\mathcal{A}}\right\|^{\frac{1}{2}}\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle_{\mathcal{A}}\right\|^{\frac{1}{2}} \\
& \quad \times\left\|\sum_{j \in J}\left(w_{j}^{\prime}\right)^{2}\left\langle\Gamma_{j}^{\prime} P_{K_{j}^{\prime}}^{\prime}, \Gamma_{j}^{\prime} P_{K_{j}^{\prime}}^{\prime} y\right\rangle_{\mathcal{B}} \frac{1}{2}\right\| \sum_{j \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} y_{1}, \Gamma_{j} P_{K_{j}} y_{1}\right\rangle_{\mathcal{B}} \|^{\frac{1}{2}} \\
& =\left\|\sum_{i \in I}\left(v_{i}^{\prime}\right)^{2}\left\langle\Lambda_{i}^{\prime} P_{H_{i}^{\prime}} x, \Lambda_{i}^{\prime} P_{H_{i}^{\prime}} x\right\rangle_{\mathcal{A}}\right\|^{\frac{1}{2}}\left\|\sum_{j \in J}\left(w_{j}^{\prime}\right)^{2}\left\langle\Gamma_{j}^{\prime} P_{K_{j}^{\prime}}^{\prime} y, \Gamma_{j}^{\prime} P_{K_{j}^{\prime}} y\right\rangle_{\mathcal{B}}\right\|^{\frac{1}{2}} \\
& \quad \times\left\|\sum_{i \in I} v_{i}^{2}\left\langle\Lambda_{i} P_{H_{i}} x, \Lambda_{i} P_{H_{i}} x\right\rangle_{\mathcal{A}}\right\|^{\frac{1}{2}}\left\|\sum_{j \in J} w_{j}^{2}\left\langle\Gamma_{j} P_{K_{j}} y_{1}, \Gamma_{j} P_{K_{j}} y_{1}\right\rangle_{\mathcal{B}}\right\|^{\frac{1}{2}} \\
& =\left\|\sum_{i, j}\left(v_{i}^{2}\right)^{\prime}\left(w_{j}^{2}\right)^{\prime}\left\langle\left(\Lambda_{i}^{\prime} \otimes \Gamma_{j}^{\prime}\right) P_{H_{i}^{\prime} \otimes K_{j}^{\prime}}(x \otimes y),\left(\Lambda_{i}^{\prime} \otimes \Gamma_{j}^{\prime}\right) P_{H_{i}^{\prime} \otimes K_{j}^{\prime}}(x \otimes y)\right\rangle\right\|^{\frac{1}{2}} \\
& \quad \times\left\|\sum_{i, j} v_{i}^{2} w_{j}^{2}\left\langle\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}\left(x_{1} \otimes y_{1}\right),\left(\Lambda_{i} \otimes \Gamma_{j}\right) P_{H_{i} \otimes K_{j}}\left(x_{1} \otimes y_{1}\right)\right\rangle\right\|^{\frac{1}{2}} \\
& \leq \\
& \quad \sqrt{B_{1} B_{2}}\|x \otimes y\| \otimes\left\|x_{1} \otimes y_{1}\right\| .
\end{aligned}
$$

Let $S_{\Lambda \Lambda^{\prime}}$ and $S_{\Gamma \Gamma^{\prime}}$ be the frame operators for the pair of g-fusion Bessel sequences $\left(\Lambda, \Lambda^{\prime}\right)$ and $\left(\Gamma, \Gamma^{\prime}\right)$, respectively. Then by above calculation

$$
\begin{aligned}
\left\|\left\langle S(x \otimes y), x_{1} \otimes y_{1}\right\rangle\right\| & =\left\|\left\langle\left(S_{\Lambda \Lambda^{\prime}} \otimes S_{\Gamma \Gamma^{\prime}}\right)(x \otimes y), x_{1} \otimes y_{1}\right\rangle\right\| \\
& =\left\|\left\langle S_{\Lambda \Lambda^{\prime}} x, x_{1}\right\rangle_{\mathcal{A}} \otimes\left\langle S_{\Gamma \Gamma^{\prime}} y, y_{1}\right\rangle_{\mathcal{B}}\right\| \\
& \leq \sqrt{B_{1} B_{2}}\|x\|\|y\|\left\|x_{1}\right\|\left\|y_{1}\right\|,
\end{aligned}
$$

so,

$$
\sup _{\left\|y_{1}\right\|=1}\left\|\left\langle S_{\Gamma \Gamma^{\prime}} y, y_{1}\right\rangle_{\mathcal{B}}\right\| \sup _{\left\|x_{1}\right\|=1}\left\|\left\langle S_{\Lambda \Lambda^{\prime}} x, x_{1}\right\rangle_{\mathcal{A}}\right\| \leq \sqrt{B_{1} B_{2}}\|x\|\|y\|
$$

hence,

$$
\left\|S_{\Lambda \Lambda^{\prime}} x\right\|\left\|S_{\Gamma \Gamma^{\prime}} y\right\| \leq \sqrt{B_{1} B_{2}}\|x\|\|y\|
$$

do,

$$
\frac{\left\|S_{\Lambda \Lambda^{\prime}} x\right\|}{\|x\|} \frac{\left\|S_{\Gamma \Gamma^{\prime}} y\right\|}{\|y\|} \leq \sqrt{B_{1} B_{2}}
$$

again taking supremum on both side with respect to $\|x\|=1$ and $\|y\|=1$,

$$
\|S\|=\left\|S_{\Lambda \Lambda^{\prime}} \otimes S_{\Gamma \Gamma^{\prime}}\right\|=\left\|S_{\Lambda \Lambda^{\prime}}\right\|\left\|S_{\Gamma \Gamma^{\prime}}\right\| \leq \sqrt{B_{1} B_{2}}
$$

Declarations

Availablity of data and materials

Not applicable.

Competing interest

The authors declare that they have no competing interests.

Fundings

Authors declare that there is no funding available for this article.

Authors' contributions

The authors equally conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

References

1. Alijani A, Dehghan M, 2011. *-Frames in Hilbert \mathcal{C}^{*}-modules, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 73, no. 4, 89-106.
2. Arambašić L, 2007. On frames for countably generated Hilbert \mathcal{C}^{*}-modules, Proc. Am. Math. Soc. 135, 469-478.
3. Conway J. B, 2000. A Course In Operator Theory, Am. Math. Soc., Providence, RI.
4. Davidson F. R, 1996. \mathcal{C}^{*}-Algebra by Example, Fields Inst. Monog. 6, Am. Math. Soc., Providence, RI.
5. Duffin R. J, Schaeffer A. C, 1952. A class of nonharmonic fourier series, Trans. Am. Math. Soc. 72, 341-366.
6. Gabor D, 1946. Theory of communications, J. Elect. Eng. 93 (1946), 429-457.
7. Kabbaj S, Rossafi M, 2018. *-operator Frame for $E n d_{\mathcal{A}}^{*}(\mathcal{H})$, Wavelet Linear Algebra, 5, (2), 1-13.
8. Kaplansky I, 1953. Modules over operator algebras, Am. J. Math. 75, 839-858.
9. Khorsavi A, Khorsavi B, 2008. Fusion frames and g-frames in Hilbert \mathcal{C}^{*}-modules, Int. J. Wavelet, Multiresolution and Information Processing 6, 433-446.
10. Lance E. C, 1995. Hilbert \mathcal{C}^{*}-Modules: A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser., vol. 210, Cambridge Univ. Press.
11. Rossafi M, Kabbaj S, 2020. *-K-operator Frame for $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H})$, Asian-Eur. J. Math. 13, 2050060.
12. Rossafi M, Kabbaj S, 2019. Operator frame for $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H})$, J. Linear Topol. Algebra, 8, 85-95.
13. Rossafi M, Kabbaj S, 2018. *-K-g-frames in Hilbert \mathcal{A}-modules, J. Linear Topol. Algebra, 7, 63-71.
14. Rossafi M, Kabbaj S, 2018. *-g-frames in tensor products of Hilbert C^{*}-modules, Ann. Univ. Paedagog. Crac. Stud. Math. 17, 17-25.
15. Rossafi M, Kabbaj S, 2022. Generalized frames for $B(\mathcal{H}, \mathcal{K})$, Iran. J. Math. Sci. Inf. 17, no. 1, 1-9.
