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Some Convergence Theorems for Henstock-Kurzweil 

Integrable Functions with Values in Riesz Spaces 

Defined on Euclidean Spaces 
n  

 

Muslim Ansori

  

 

Abstract  

Some convergence Theorems for Henstock Integrable functions from Euclidean space 
n  

into Riesz spaces are constructed by using decreasing net of double sequences. We give more 

general results than those of the convergence Theorems for Henstock Integrable functions 

with values in sequence spaces. 
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1. Introduction 

The Henstock-Kurzweil integral for Riesz-space-valued functions defined on bounded 

subintervals of the real line and with respect to operator-valued measures was investigated in [9] 

and[10], with respect to  D - convergence (that is a kind of convergence in which the  -

technique is replaced by a technique involving double sequences , see [11] and [12], with respect 

to the order convergence, see [5] and in [6] with respect to the order convergence but the 

Henstock-Kurzweil integral for Riesz-space-valued functions was defined on unbounded 

subintervals of the real line. 

The Henstock-Kurzweil integral for real-valued functions defined on  Euclidean space 
n  with respect to volume   was investigated in [15] and [7] and The Henstock-Kurzweil 

integral for bounded-sequence-space-valued functions defined on  Euclidean space 
n  with 

respect to volume   was investigated in [1], [2] and [13]. The last work was conducted by 

constructing The Henstock-Kurzweil integral for Riesz-space-valued functions defined on  

Euclidean space 
n  with respect to volume  , by using decreasing nets, see [3]. 

The main goal of this paper is to build the convergence theorems for the Henstock-

Kurzweil integral for Riesz-space-valued functions defined on  Euclidean space 
n  with respect 

to volume  , by generalizing the results in the Henstock-Kurzweil integral for bounded-

sequence-space-valued functions defined on  Euclidean space 
n  with respect to volume  .  

 

2. Preliminary 

Let be the set of all strictly positive integers,   the set of the real numbers, 
  be 

the set of all strictly positive real numbers. Moreover, we refer to [16]  about the notions of cell, 

segmentation, partition,  -volume, and  - fine Perron partition. 
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Definition 1  [14].  

A Riesz space L  is said to be Dedekind complete if every nonempty subset of L , bounded 

from above, has supremum in L . 

Definisi 2  [11].  

A bonded double sequence  , ,i j i j
a L  is called regulator or  D -sequence if, for each  

,, 0i ji a  ,  that is  , , 1i j i ja a j    and , 0i j
j

a

  . 

Definition 3  [6].  

Given a sequence  n n
r L . Sequence   n n

r  is said to be  D -convergence to an element 

r L  if there exist a regulator  , ,i j i j
a , satisfying the following condition: for every 

mapping  :  , denoted by   , there exists an integer  0n   such that 

 ,
1

n i i
i

r r a





     for all  0n n  . In this case, the notation is denoted by   limn nD r r . 

Definition 4  [6]. 

A Riesz Space L  is said to be weakly  -distributive if for every  D - sequence  ,i ja , then 

 ,
1

0
i i

i
a








 
   

 
. 

Throughout the paper, we shall always assume  that  L  is Dedekind complete weakly 

  distributive Riesz space. 

In the principle, this integral is a generalization of Henstock-Kurzweil integral for 

Riesz-valued functions defined on subintervals of the real line by changing the length of 

 ,a b   with the general volume   of a cell 
nA  , see [15] and [1]. Remember that the 

volume   on cell 
nA   is an additive and non negative function from   A  into  , where 

 A  is a collection of all subcells in A . 

Here are some recent results of the Henstock-Kurzweil integral for Riesz-space-valued 

functions defined on  Euclidean space  
n  with respect to volume  . 

Definition 5 [3]. 

Let    be a volume on 
n  and  

nA  be a cell.  A function  : nf L   is said to be 

Henstock-Kurzweil integrable  on  A   with respect to  , denoted by  , ,f HK A L  , if 

there exists an element  L  and  D -sequence   , ,i j i j
a L   such that for every    

we can find  a function : E   such that  

         ,
1

1

r

k r i i
i

k

P f x I f x I a


 





                     

for every   -fine Perron partition          1 1 2 2, , , , ,..., ,r rP I x I x I x I x   on A . 

We note that the Henstock-Kurzweil integral with respect to   is well- defined, that is 

there exists at most one element  , satisfying Definition 5 and  in this case we have 

 
A

HK fd   . The uniqueness is given in the following theorem. 
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Theorem 1  [3].  

Let    be a volume on 
n  and  

nA  be a cell.  If function  , ,f HK A L   , then its 

-integral is unique. 

Theorem 2  [3].  

If  1 2, , ,f f HK A L   and 1 2,k k  , then  1 1 2 2 , ,k f k f HK A L    and 

       1 1 2 2 1 1 2 2

A A A

HK k f k f d k HK f d k HK f d       . 

Theorem  3  [3].  

If  , , ,f g HK A L   and    f x g x  for every x A , then    
A A

HK fd HK gd   . 

Definition 6 (Elementary Set).  

A set  
nA   which is union of finite cells is called  an elementary set. 

Every elementary set can be segmented into non-overlapping cells.  If 1A   and 2A  are 

elementary sets then  1 2A A   and  1 2\A A   are also  elementary sets. Integration on elementary 

set  can be constructed  through the following theorem. 

Teorema 4 [3].  

Let    be a volume on 
n  and 1A  and  2A  be non-overlapping cells in 

n  and 1 2A A A . 

If  1, ,f HK A L   and  2 , ,f HK A L   , then  , ,f HK A L   and 

     
1 2 1 2A A A A A

HK fd HK f d HK f d  


     

By implementing Theorem 4 and Definition 5 above, we can see  immediately that the 

following holds. 

Corrolary 1 [3].  

Given an elementary set 
nA   and   volume on A . A function :f A L  is said to be 

Henstock-Kurzweil integrable  on  A   with respect to  , denoted by  , ,f HK A L  , if  

 , ,if HK A L   for every i, where 
1

p

i
i

A A


  and  1 2, ,..., pA A A  is any division on A . The 

Henstock-Kurzweil integral of function f  on A  is 

 
1

i

p

iA A

HK fd fd 


  . 

Theorem 5 [3].   

A function :f A L  is Henstock-Kurzweil integrable if and only if there exists a  D 

sequence  , ,i j i j
a  in L  such that, for every     we can find a function : A   and 

for every   fine Perron partition   1 ,P I x and   2 ,P I x  on A , we have 

         1 2 ,
1

i i
i

P f x I P f x I a


 



     
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Theorem  6 [3].   

Let   be a volume on a cell  
nA  . If  , ,f HK A L  , then  , ,f HK B L  , for every 

cell  B A . 

 Based on  Theorem 6,  we  define primitif function of Henstock-Kurzweil integrable 

function f  on  a cell 
nA   with respect to a volume   as follows. 

Definition 7 [3].  

If   , ,f HK A L   and  A  is a collection of all subcells in A , then  a function 

 :F A L   satisfying 

   
I

F I HK f d    and   0F    

for every cell  I A  is called  - Primitif of Henstock-Kurzweil integrable function f  on 

 A . 

 

3. Main Results and Discussion 

Convergence of a sequence of functions is always associated with its limit  and  

function property in the sequence. Let 
  nf  be a sequence function defined on 

nRI  . Then 

this sequence is said to be convergent to a function f  on I  if 
    xfxf n

n



lim  for every 

Ix  . A sequence of functions 
  nf  is called increasingly monoton or decreasingly monoton 

if 
       xfxf nn 1  or 

       xfxf nn 1  for every Ix  , respectively. Let 
 

:
n

f I L  

for every Nn .  Then a sequence function 
  nf  is  convergent to a function f  at Ix   if 

and only if  there exists  D -sequence    , ,i j i j
a L   such that for every    ,  

                                                   
       ,1

n

i ii
f x f x a






    

for every 0nn  . A sequence function 
  nf  is  convergent to a function f on I  if and only if 

sequence 
    xf n

 is  convergent to a function  xf  for every Ix  . A sequence function 

  nf  is  uniformly convergent to a function f  on I  if and only if  if there exists  D -

sequence   , ,i j i j
b L   such that for every    ,  

                                                   
       ,1

n

i ii
f x f x b






    

for every 0nn  , Ix  . 

Now, we give some convergence theorems for Henstock Integrable functions with 

values in L .  

Theorem 7. 
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(Uniformly Convergence Theorem). Let 
nRI   be a cell and 

  nf   , ,HK A L  . If 

sequence of functions 
  nf  is convergent uniformly to a function f on I , then f 

 , ,HK A L   and  

                                                 dfHdfH
I

n

n
I

 
 lim  

Proof:  

A sequence function 
  nf  is  uniformly convergent to a function f  on I  if and only if  if 

there exists  D -sequence   , ,i j i j
a L   such that for every    ,  

                                     
         

1

4 ,1

n

I i ii
f x f x a

 




     (1) 

for every 0nn  , Ix  . 

A function 
   , ,
n

f HK A L  if there exists   D -sequence   , ,i j i j
b L   such that for every 

   we can find  a function  : E  such that  

       
   

1
,4 1

1

r
n n

k r i iII i
k

f x I f d b


 





                      (2)        

for every   -fine Perron partition          1 1 2 2, , , , ,..., ,r rP I x I x I x I x   on A . And  if 

     IxPIxP ,,, 21   are n - fine Perron partition on I , then 

                    
             

1

41 2 ,1

n n

i ii
P f x I P f x I c


 




     .                   (3) 

Based on (1) and (3), we have 

                 
           

         

 

 
 

   

 
 

 

1 2 1 1

1 2

2 2

, , ,1 1 1

1

2 ,1

4 4 4

m

m m

m

i i i i i ii i i

i ii

P f x I P f x I P f x I P f x I

P f x I P f x I

P f x I P f x I

a c a
I I

I I

d

  



   

 

 

 
 

  

  





   

 



  
  

   
 

   

 

      (4)      

where 
     , , ,i i i i i i

d a c
  

  . This shows that  , ,f HK A L  . Furthermore, since

 , ,f HK A L  , then there exists   D -sequence   , ,i j i j
b L   such that for every    

we can find  a function  ' : E  such that  

       
   

1
,4 1

1

r
n n

k r i iII i
k

f x I f d b


 





      (5)      
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for every   -fine Perron partition   ' ,P I x  on A . By taking       xxx n ,'min  

for every  Ix   and  if   IxP ,  is arbitrary  - fine Perron partition on I , then we have 

         

     

       

n

I I I

n

n n

I

H f d H f d H f d P f I

P f I P f I

P f I H f d

   

 

 

   

 



  

 

 

               (6) 

         

 

 
 

 

 
 

 

 

, , ,1 1 1

,1

4 4 4

1

4

i i i i i ii i i

i ii

b a c
I I

I I

e

  



 
 

  

  





  
  

 

       

where 
       , , , ,i i i i i i i i

e a b c
   

   .  Thus, we have proved that  

       dfHdfH
I

n

n
I

 
 lim . 

Theorem 8  (Monoton Convergence Theorem).  

Let 
nRI   be a cell and     , ,

n
f HK A L  . If sequence of monoton functions 

  nf  is 

convergent to a function f  on I  and     dfH
I

n

n 
lim  exists, then  , ,f HK A L   and  

                                                 dfHdfH
I

n

n
I

 
 lim  

Proof:  

We just need to prove for sequence 
  nf  of  increasingly monoton on I . Based on 

assumption , we can find L  so that    
lim

n

n
I

H f d


  . Since 
  nf  of  increasingly 

monoton on I , it follows that  this sequence,    









 dfH
I

n
is increasingly monoton  and  

a  as its least upper bound. Hence, there exists  D -sequence   , ,i j i j
a L   such that for 

every    ,there exists Nn 0 , such that if 0nn  , we obtain 

     ,1

4

i in i

I

a
H f d









                                                     (7) 

Since 
  nf  is convergent to a function f  on I , then there exists  D -sequence  

 , ,i j i j
b L   such that for every    and Ix   there exists  xmm ,00   such that if 

0mn  , we have 
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     
 

 
,1

4 1

i in i
b

f x f x
I










 


                                                             (8) 

Since 
   , ,
n

f HK A L   for every n , it follows that  then there exists  D -sequence  

 , ,i j i j
c L   such that for every   , there exists a positive function   ,0: In  

such that for every n -fine Perron partition   IxPn ,  on I , we have 

       
 ,1

22

i in i

n n

c
P f x I F I











                                        (9) 

Taking positive function   ,0: I  where     xx xm ,   for every Ix   and 

    xmnxm ,,max, 00   . Hence, if   IxP ,  is  -fine Perron partition on I , then 

 

       

           

1

,

1

i

k

i i

i

k
m x

i i i i

i

P f x I f x I

f x I f x I


 

 





  

  

 


 

 

           

    

 

 
   

 

, ,

1

,

1

, , ,1 1 1

2
1 1

,1

( ) 2
4 2 4

i i

i

i

i

k
m x m x

i i

i I

k
m x

i I

k
i i i i i ii i i

i n
i n

i ii

f x I H f d

H f d

b c a
I

I

f

 



  



 










  



  


 





  
 

  

 

  
  

 

 

 

 

         (10)                       

where, 
       , , , ,1 1 1i i i i i i i ii i i

f a b c
   

  

  
      . 

This shows that  , ,f HK A L   and       adfHdfH
II

n

n
 

lim . 

Furthermore, Let 
         ,...inf,infinf 21

nnn fff   be  infimum of sequence 
  nf . 

Theorem 9.  

Let 
nRI   be a cell. If  

   , , ,
n

nf g HK A L   and 
  gf n   for every n , then 

    inf , ,
n

f HK A L   

Proof: 

Let 
                xfxfxfxh nn ,...,,min 21  be defined for every Ix  . It follows that 

     xgxh n   for every Ix  . Thus, we have a decreasingly bounded sequence 
  nh  
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where 
      xgxhf n inf  be its bound for every Ix  . Since 

   , ,
n

f HK A L   for 

every n , then 
   , ,
n

h HK A L   and since 
   kn fhg   for every kn  , it follows that 

         
  
I I

kn

I

dfHdhHdgH                                              (11) 

and    


dhH n

n
lim  exists, say    


 dhHa n

n
lim . Thus,  

     
 
I

k

I

dfHadgH   for every k .  

And, from Theorem 2, this shows that     inf , ,
n

f HK A L  . 

Theorem 10. (Fatou Lemma).  

Let 
nRI   be a cell and 

   , ,
n

f HK A L   for every n .  

If 
  k

knn
ff


 inflim  and     













 
dfHf n

knn
inflim , then  , ,f HK A L   and  

                                                dfHdfH
I

n

n
I

 
 lim  

Proof:  

Let 
     k

nk

n fxh


 inf  be defined for every Ix  . It follows that 
  nh  is increasingly 

sequence on I  and 
       xfxh nn   for every Ix  . Thus, 

       
 


I

n

n
I

n

n
dfHdhH  limlim                                                     (12) 

and 
  nh is convergent to f . Since     dhH n

n 
lim  exists, then under Monoton 

convergence Theorem, we have  , ,f HK A L   and  

         













  
 dfHdhHdfH n

knn

n

I
n

inflimlim                         (13) 

Corrolary 3.5. 

Let 
nRI   be a cell, 

   , , ,
n

nf g HK A L  and 
  gfg n   for every n . If 

  ff n

n



lim   then  , ,f HK A L   and          dfHdfH

I

n

n
I

 
 lim . 

4. Concluding Remarks 

The convergence theorems for the Henstock-Kurzweil integral for Riesz-space-valued 

functions defined on Euclidean space 
n  with respect to volume  , have been built by 

generalizing the results in the Henstock-Kurzweil integral for bounded-sequence-space-valued 

functions defined on  Euclidean space 
n  with respect to volume  . Further works are to 
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compare the results with McShane integrable functions especially with srong McShane integrable 

functions. 

 

Acknowledgements. This research is partially supported by PDM DIKTI 2006. We thank all 

anonymous refree who read this paper carefully. 

References 

[1]. M. Ansori and S. Darmawijaya, 2002, “Henstock Integrable Functions with Values in 

Sequence Spaces”, Jurnal Matematika dan Pembelajaran, UM, Malang. 

[2]. M. Ansori, 2003, “Integral Henstock-Kurzweil Fungsi-Fungsi dari Ruang Euclide R
n
 ke 

Ruang Banach  ”,  Tesis S2 UGM, Yogyakarta. 

[3]. M. Ansori, 2006, “Konstruksi Integral Henstock Kurzweil Fungsi-Fungsi Bernilai Riesz 

pada Ruang Euclidean R
n
 menggunakan Tehnik Jaring Turun (decreasing Net)”, Laporan 

PDM DIKTI.  

[4]. A. Boccuto, 1998, “Differential and integral calculus in Riesz Spaces”, Tatra Mountains 

Math. Publ.,14,133-323. 

[5]. A. Boccuto and B. Riecan, 2004, “On The Henstock-Kurzweil Integral for Riesz-Space-

Valued Functions Defined on Unbounded Intervals”, Chech. Math. Journal, 54,3, 591-607. 

[6]. S.S. Cao, 1992, “The Henstock Integral for Banach Valued Functions”,  SEA Bull. Vol. 16, 

page 36-40. 

[7]. C.H. Indrati, C.H., 2002, “Integral henstock-Kurzweil pada Ruang Euclide R
n”

, Disertasi 

UGM, Yogyakarta. 

[8]. P.Y Lee and R. Vyborny, 2000, “Integral. An Easy Approach after Kurzweil and 

Henstock”,  New York, Cambridge University Press. 

[9]. W.F. Pfeffer, 1993, “The Riemann Approach  to Integration”, Cambridge University Press. 

[10]. B. Riecan, 1989, “On the Kurzweil Integral for Functions with Values in Ordered Spaces 

I”, Acta Math. Univ. Comenian. 56-57,75-83. 

[11]. B. Riecan, 1992, “On Operator Valued Measures in Lattice ordered Groups”,  Atti. Sem. 

Mat. Fis. Univ. Modena, 40, 151-154. 

[12]. B. Riecan and M. Vrabelova, 1996, “On The Kurzweil integral for Functions with Values in 

Ordered Spaces  III”, Tatra Mountains Math. Publ.,8, 93-100. 

[13]. B. Riecan and T. Neubrunn, 1997, “Integral, Measure and Ordering”, Kluwer Academic 

Publishers, Bratislava. 

[14]. A.A. Zaanen, 1997, “Introduction to Operator Theory in Riesz Spaces”, Springer Verlag. 

[15]. Zachriwan., 2004, Integral Henstock Fungsi bernilai di dalam Ruang Barisan 

   1p p , Tesis S2 UGM. 

 


