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Abstract 

In this paper, we discuss the predator-prey model using Holling type II functional response with 

the time delay in facultative stabilization pond. In this research, we discuss the predator-prey model 

using Holling type II functional response with the time delay, determining the equilibrium point, 

the stability analysis of predator-prey model using Holling type II functional response with the time 

delay and numerical simulation of the predator-prey model using Holling type II functional 

response with the time delay. The method used to analyse the problem is by literature study. The 

steps used are the development of a mathematical model of change of dissolved oxygen 

concentration, phytoplankton and zooplankton, mathematical equation solving algorithm, field 

data, simulation using Maple and Mathematica 9 software and validation with research. As a result 

of the research, from the model obtained there are 3 equilibrium points, i.e. 𝑇0, 𝑇1 and 𝑇2 with 

conditions 2𝛼𝛽 + 𝜑(𝜑 − 1) > 0, 𝛼𝛽 > 𝜑,𝜔 > 𝜇 and 
𝛽𝐶

𝐶+𝜑
>

𝜇ℎ

𝜔−𝜇
. To analyze the existence of 

Hopf bifurcation, the predator-prey population dynamics was simulated based on three cases, by 

decreasing the time-delay in the growth rate of the predator population (𝜏𝑘). By chossing an exact 

parameter value (𝜏𝑘), we can showed the existence of Hopf bifurcation. In the case 𝜏 = 𝜏𝑘 the 

stable spiral changed into an unstable spiral and also observed the presence of limit cycles. This is 

known as Hopf bifurcation. Then, to illustrate the model, simulation model. The model simulations 

give the same result with the analysis. 

Keywords: Hopf Bifurcation, dynamic mathematical model, stabilization pond 

 
Abstrak 

Pada tulisan ini dibahas model predator-prey menggunakan fungsi respon Holling tipe II dengan 

waktu tunda pada kolam stabilisasi fakultatif. Pada penelitian ini dibahas model predator-prey 

menggunakan fungsi respon Holling tipe II dengan waktu tunda, penentuan titik kesetimbangan, 

analisis kestabilan model predator-prey menggunakan fungsi respon Holling tipe II dengan waktu 

tunda dan simulasi numerik dari model predator-prey menggunakan fungsi respon Holling tipe II 

dengan waktu tunda. Metode yang digunakan untuk menganalisis permasalahan adalah dengan 

studi literatur. Langkah-langkah yang digunakan adalah pengembangan model matematis 

perubahan konsentrasi oksigen terlarut, fitoplankton dan zooplankton, algoritma penyelesaian 

persamaan matematis, data lapangan, simulasi menggunakan software Maple dan Mathematica 9 

dan validasi dengan penelitian. Sebagai hasil penelitian, dari model yang diperoleh terdapat 3 titik 

kesetimbangan, yaitu 𝑇0, 𝑇1 dan 𝑇2 dengan syarat 2𝛼𝛽 + 𝜑(𝜑 − 1) > 0, 𝛼𝛽 > 𝜑,𝜔 > 𝜇 dan 
𝛽𝐶

𝐶+𝜑
>

𝜇ℎ

𝜔−𝜇
. Untuk menganalisis keberadaan bifurkasi Hopf, dinamika populasi predator-prey dibagi 

menjadi tiga kasus dimana tiap kasusnya mengalami penurunan nilai parameter tingkat 
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pertumbuhan populasi predator. Dengan memilih nilai parameter yang tepat (𝜏𝑘), dapat 

ditunjukkan keberadaan dari bifurkasi Hopf. Pada kasus 𝜏 = 𝜏𝑘 terjadi perubahan kestabilan 𝑇2 dari 

spiral stabil menjadi tak stabil. Fenomena ini merupakan sifat dari bifurkasi Hopf. Selanjutnya, 

untuk mengilustrasikan model tersebut maka dilakukan simulasi. Simulasi model yang dilakukan 

memberikan hasil yang sama dengan hasil analisis. 

Kata Kunci: Bifurkasi Hopf, model matematika dinamis, kolam stabilisasi 

1. INTRODUCTION 
The research of the interaction of prey-predator will be done analyzing the mathematical model. 

Our model based on the basic phytoplankton-oxygen model of Sekerci and Petrovskii research[11] 

which we expanded taking into account zooplankton and considering the influence of predation on 

oxygen dynamics. The functional response in ecology is the amount of food eaten by a predator as 

a function of food density. In this case the functional response is divided into three types, i.e. type I, 

II and III functional response. Type II functional response occurs in predators whose characteristics 

are active in searching for prey. 

To build a more realistic model, consider the delay time. Time delay is important in modeling 

real problems, because decisions are usually made based on previous conditions. This is important 

in modeling population decline, because the rate of population decline not only depends on the 

population size at one time, but also depends on previous times.  

This model will be applied to the wastewater treatment system at the Sewon Wastewater 

Treatment Plant (IPAL) using DO (Dissolved Oxygen) benchmarks and biological species indicators 

(phytoplankton and zooplankton) to determine the quality of processing. 

There is a large body of literature reviewing various aspects of spatiotemporal (in space and 

time) plankton dynamics. The predator-prey conceptual model for describing phytoplankton and 

zooplankton interactions in aquatic ecosystems was considered in detail by Malchow et al but 

without considering oxygen production. In another mathematical study, Edwards and Brindley 

examined the dynamics of combined plankton-nutrient systems, but did not consider possible 

plankton-nutrient relationships with dissolved oxygen. There are few studies in which oxygen 

production is explicitly considered. Specifically, Marchettini et al studied trophic dynamics by 

developing mathematical models of biochemical processes in lagoon ecosystems. The dissolved 

oxygen concentration in a multi-component system is considered by them. In another modeling 

study, Allegretto et al demonstrated the existence of periodic solutions in modeling Italian coastal 

lagoons. 

Marchettini et al studied a mathematical model of the biochemical processes of the lagoon 

system. In another study, Allegretto et al focused on the presence of periodic fluctuations, based on 

Italian coastal lagoons. Dynamics of plankton-nutrient systems and their dynamic properties. 

Additionally, an oxygen-algae model is introduced to reduce oxygen depletion under some external 

controlling factors. Hull et al.[4] investigated seasonal and daily dynamics of dissolved oxygen 

measurements in Mediterranean coastal lagoons. Another plankton-oxygen model has been 

proposed and analyzed by Misra [7] including the effect of some ‘exogenous’ factors (such as light, 

wind intensity, temperature, phosphorus, eutrophication, etc.), hence leaving the internal plankton-

oxygen dynamics out of the focus. Misra [8] propose and analyze a non-linear mathematical model 

for algal bloom in a lake to account for the delay in conversion of detritus into nutrients. It is assumed 

that there is a continuous inflow of nutrients in the lake due to agricultural run off.  
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In this research, we will discuss the modification of the predator-prey model using Holling type 

II with time delay, determining the equilibrium point, stability analysis and numerical simulation of 

the predator-prey model using Holling type II with time delay. Holling type II was chosen because 

it has problems that are in accordance with this type of predator which is characterized by being 

active in looking for prey. 

 

2. PRELIMINARIES 
The nonlinear differential equation is given as following. 

 𝑥̇ = 𝑓(𝑥). (1) 

The Eq. (1) has an equilibrium point 𝑥 = 𝑥̅ if it satisfies 𝑓(𝑥̅) = 0.  
For the nonlinear differential equation, the stability analysis uses the linearization. Suppose that we 

linearize the Eq. (1), then can be written as 

 𝑥̇ = 𝐴𝑥 + 𝜑(𝑥). (2) 

It is known from [2] that the Eq. (2) is the nonlinear differential equation with 𝐴 the Jacobian 

matrix of the Eq. (1) at the equilibrium point 𝑥̅,  

 𝐴 =

(

 

𝜕𝑓1

𝜕𝑥1
(𝑥̅) ⋯

𝜕𝑓1

𝜕𝑥𝑛
(𝑥̅)

⋮ ⋱ ⋮
𝜕𝑓𝑚

𝜕𝑥1
(𝑥̅) ⋯

𝜕𝑓𝑚

𝜕𝑥𝑛
(𝑥̅)
)

  (3) 

and 𝜑(𝑥) as the linear part of the Eq. (1). 𝐴𝑥 in the Eq. (2) is called the linearization of the nonlinear 

Eq. (1) which is written in the form 𝑥̇ = 𝐴𝑥. 
Suppose that 𝐴 matrix 𝑛 × 𝑛 and 𝑥 ∈  ℝ𝑛, 𝑥 ≠ 0. The vector 𝑥 is called the eigenvector or the 

characteristic vector of 𝐴 if  

 𝐴𝑥 = 𝜆𝑥, (4) 

for a 𝜆 𝜖 ℝ, the number 𝜆 that satisfy the above equation is called the eigenvalue or the characteristic 

value. To find the eigenvalue of the matrix 𝑛 × 𝑛 then the Eq. (4) can be rewritten as 

 (𝐴 − 𝜆𝐼)𝑥 = 0, (5) 

with 𝐼 is the identity matrix. The Eq. (5) has the nontrivial solution if  

 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = |𝐴 − 𝜆𝐼| = 0. (6) 

The Eq. (6) is called the characteristic equation of the matrix 𝐴 [3]. Suppose that 𝐴 = (
𝑎 𝑏
𝑐 𝑑

). From 

the Eq. (6), then the characteristic equation of 𝐴 becomes |
𝑎 − 𝜆 𝑏
𝑐 𝑑 − 𝜆

| = 0. Therefore, we obtain 

the equation 𝜆2 − 𝜏𝜆 + Δ = 0, with 𝜏 = trace (𝐴) = 𝑎 + 𝑑 = 𝜆1 + 𝜆2 and Δ = det(𝐴) = 𝑎𝑑 −
𝑏𝑐 = 𝜆1𝜆2. Such that, we have the eigenvalues from the matrix 𝐴 as following.  

 𝜆1,2 =
𝜏±√𝜏2−4𝛥

2
. (7) 

According to [1], to determine the stability of the fixed point of system can be shown from the 

value Δ. There are three cases for the value Δ i.e.: 

(1) Δ < 0 

If two eigenvalues have the different sign, then the fixed point is saddle. 

(2) Δ > 0 

(a) 𝜏2 − 4Δ > 0 

(i) If τ > 0 and both eigenvalues are the positive real number, then the fixed point is 

unstable node. 

(ii) If τ < 0 and both eigenvalues are the negative real number, then the fixed point is stable 

node. 

(b) 𝜏2 − 4Δ < 0 

(i) If τ > 0 and both eigenvalues are the complex number, then the fixed point is unstable 

spiral. 
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(ii) If τ = 0 and both eigenvalues are the complex number, then the fixed point is stable 

spiral. 

(iii) If τ < 0 and both eigenvalues are the complex number, then the fixed point is center. 

(c) 𝜏2 − 4Δ = 0 

Parabola is the boundary line between the node and spiral. Star node or degenerate lies in this 

parabola. If both eigenvalues have the same value, then the fixed point is proper node. 

(3) Δ = 0 

If one of the eigenvalue is zero, then the fixed point is not the isolated equilibrium point. 

Namely, given a real polynomial 

 𝑝(𝑧) = 𝑎0𝑧
𝑛 + 𝑎1𝑧

𝑛−1 +⋯+ 𝑎𝑛, (8) 

with positive and real numbers, 𝑘 = 1, 2, 3,⋯𝑛  

The 𝑛 × 𝑛 square matrix 

 

























=

−−

n

nn

a

aa

aaaa

aaaa

aa

H

00000

0000

00

00

0000

21

2345

0123

01













 (9) 

is called Hurwitz matrix corresponding to the polynomial 𝑝. It was established by Adolf Hurwitz in 

1895 that a real polynomial is stable (that is, all its roots have strictly negative real part) if and only 

if all the leading principal minors of the matrix 𝐻(𝑝) are positive:   

 ∆1(𝑝) = |𝑎1| = 𝑎1 > 0, ∆2(𝑝) = |
𝑎1 𝑎0
𝑎3 𝑎2

| = 𝑎1𝑎2 − 𝑎0𝑎3 > 0, ∆𝑛(𝑝) = |𝐻| > 0. [10]

 (10) 

Furthermore, Guckenheimer and Holms in Irwan [6] explain that the qualitative structure of a 

dynamic system can change due to the change of the parameter of the dynamic system. This is known 

a bifurcation. Bifurcation is the change in the stability and the number of the equilibrium point due 

to the change in the parameter. Suppose that the equation of the differential equation system 

 {
𝑥̇ = 𝑓(𝑥, 𝑦, 𝜇)

𝑦̇ = 𝑔(𝑥, 𝑦, 𝜇)
. (11) 

We assume that Eq. (11) has the equilibrium point (𝑥∗, 𝑦∗) and 𝜇 = 𝜇∗ is the value of the 

parameter that caused the bifurcation. 

According to [5], the Hopf bifurcation occurs if the equilibrium point (𝑥∗, 𝑦∗) has a pair of the 

complex eigenvalues i.e. 𝜆(𝜇∗) = 𝑝(𝜇∗) + 𝑖𝑞(𝜇∗) with 𝑝(𝜇∗) = 0, 𝑞(𝜇∗) ≠ 0 and satisfies the 

transversal condition. 

 

3. METHOD 

The stages of the research carried out are as follows. Journal review, development of a mathematical 

model of change of dissolved oxygen concentration, phytoplankton and zooplankton, the stage of 

determining the fixed point is obtained by making the rate of change of predator and prey with 

respect to time equal to zero, fixed point stability analysis stage where fixed point stability without 

time delay is obtained by a linear approach whereas fixed point with a time delay requires an 

approach in complex space to analyze the Hopf bifurcation, Stage of determination of transverse 

conditions to prove that a Hopf bifurcation occurs at the inner equilibrium point and the interior 

point stability simulation stage is carried out for each parameter according to the conditions so that 

obtained an overview of the influence of delay time on predators and prey. 

 

4. MODEL FORMULATION 

4.1. THE BASELINE MODEL 
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We begin with a simple conceptual model that only takes into account the temporal dynamics of the 

oxygen itself and the phytoplankton as its main producer: 

 

 

 

 

 

 

Figure 1. Interactions between oxygen & phytoplankton. Phytoplankton produces oxygen through 

photosynthesis during the day-time depending on existence of sunlight and consumes it during the 

night 

 
𝑑𝑐

𝑑𝑡
= 𝐴𝑓(𝑐)𝑝 − 𝑚𝑐, (12) 

 
𝑑𝑝

𝑑𝑡
= 𝑔(𝑐, 𝑝)𝑝, (13) 

here 𝑐 and 𝑝 the concentration of the dissolved oxygen and the phytoplankton density 𝑓(𝑐): the 

amount of oxygen produced per unit time and per unit phytoplankton mass, 𝑔(𝑐, 𝑝): the per capita 

phytoplankton growth rate, 𝐴: a coefficient that can take into account the effect of relevant 

environmental factors and 𝑚𝑐: oxygen losses, e.g. due to its diffusion to the atmosphere, plankton 

breathing, etc. Note that Eq. (12) is linear with respect to 𝑝 and indeed we are not aware about any 

evidence that the photosynthesis rate can depend on phytoplankton density. On the contrary, Eq. 

(13) should normally be nonlinear with respect to 𝑝 (hence the dependence of 𝑔 on 𝑝) as the high 

phytoplankton density is known to damp its growth, e.g. due to self shading and or nutrient depletion. 

In order to understand what can be the properties of functions 𝑓 and 𝑔, we have to look more closely 

at the oxygen production and consumption. Consider 𝑓(𝑐) first. Oxygen is produced inside 

phytoplankton cells in photosynthesis and then diffuse through the cell membrane into the 

surrounding water. Diffusion flux always directed from areas with higher concentration of the 

diffusing substance to the areas with lower ones; the larger is the difference between the 

concentrations, the larger is the flux (cf. the Fick law). Therefore, for the same rate of photosynthesis, 

the amount of oxygen that gets through the cell membrane will be the larger the lower is the oxygen 

concentration in the surrounding water. Therefore, 𝑓 should be a monotonously decreasing function 

of 𝑐. We further assume that the oxygen flux through the cell membrane tends to zero when the 

oxygen concentration in the water is very large, i.e., in physical terms, is close to its saturating value 

𝑐 → ∞. The above features are qualitatively taken into account by the following parameterization: 

 𝑓(𝑐) = 1 −
𝑐

𝑐+𝑐0
, (14) 

where 𝑐0: the half-saturation constant. Considering phytoplankton multiplication, we assume that 

𝑔(𝑐, 𝑝) = 𝛼(𝑐) − 𝛾𝑝 where 𝛼(𝑐): the phytoplankton linear growth and 𝛾𝑝: intraspecific competition 

for resources. Eq. (13) for the phytoplankton growth is therefore essentially the logistic growth 

equation where 
1

𝛾
: plays the role of the carrying capacity, which we assume does not depend on 𝑐. 

However, the linear growth rate 𝛼 should depends on 𝑐, which can be seen from the following 

argument. Phytoplankton produce oxygen in photosynthesis during the daytime, but it needs oxygen 

for breathing during the night; therefore, a low oxygen concentration is unfavorable for 

phytoplankton and is likely to depress its reproduction. On the other hand, a phytoplankton cell 

cannot take more oxygen than it needs. Hence 𝛼 should be monotonously increasing function of 𝑐 
tending to a constant value for 𝑐 → ∞. The simplest parameterization for 𝛼 is then given by the 

Monod function, so that for 𝑔(𝑐, 𝑝) we obtain: 

 𝑔(𝑐, 𝑝) =
𝐵𝑐

𝑐+𝑐1
− 𝛾𝑝, (15) 

where 𝑐1: the half-saturation constant and 𝐵: the phytoplankton maximum per capita growth rate. 

With Eqs. (14–15), Eqs. (12–13) take the following form. 

𝑔(𝑐, 𝑝)𝑝  

Phytoplankton 

Oxygen 
 

𝐴𝑓(𝑐)𝑝 
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𝑑𝑐

𝑑𝑡
= 𝐴 (1 −

𝑐

𝑐+𝑐0
) 𝑝 −𝑚𝑐, (16) 

 
𝑑𝑝

𝑑𝑡
= (

𝐵𝑐

𝑐+𝑐1
− 𝛾𝑝)𝑝. (17) 

𝑡′ = 𝑡𝑚, 𝑐′ =
𝑐

𝑐0
, 𝑝′ =

𝛾𝑝

𝑚
, 𝐴̂ =

𝐴

𝑐0𝛾
, 𝐵̂ =

𝐵

𝑚
, 𝑐1̂ =

𝑐1

𝑐0
.  

In the equation system (16-17), the parameter 𝑡′ = 𝑡𝑚 ⟺ 𝑡 =
𝑡′

𝑚
 describes that multiple of time 

𝑡, 𝑐′ =
𝑐

𝑐0
⇔ 𝑐 = 𝑐′𝑐0 shows that oxygen concentration dissolved accompanied by the influence of 

water saturation level, 𝑝′ =
𝛾𝑝

𝑚
⇔ 𝑝 =

𝑚𝑝′

𝛾
 shows that phytoplankton population density, 𝐴̂ =

𝐴

𝑐0𝛾
⇔

𝐴 = 𝐴̂𝑐0𝛾 describes that the influence of environmental factors on the rate of oxygen production 

which depends on the level of water saturation, 𝐵̂ =
𝐵

𝑚
⇔ 𝐵 = 𝐵̂𝑚 shows that the maximum growth 

rate of phytoplankton per capita and 𝑐1̂ =
𝑐1

𝑐0
⇔ 𝑐1 = 𝑐1̂𝑐0 maximum growth saturation level of 

phytoplankton. 

Thus, Eqs. (16-17) is equivalent to the following equation. 

 
𝑑𝑐

𝑑𝑡
= 𝐴 (1 −

𝑐

𝑐+𝑐0
) 𝑝 −𝑚𝑐, (18) 

 
𝑑𝑝

𝑑𝑡
= (

𝐵𝑐

𝑐+𝑐1
− 𝑝)𝑝. (19) 

Eqs. (16-17) have two equilibrium points, i.e. 𝑇0(0, 0) and 𝑇1 (
−𝑐1−1+√Ω

2
,
2𝐴𝐵+𝑐1(𝑐1−1)−𝑐1√Ω

2𝐴
) where 

Ω = 4AB + (𝑐1 − 1)
2
 
with the conditions 2AB + 𝑐1(𝑐1 − 1) > 0 and AB > 𝑐1 with Jacobian matrix 

𝐽 = (
−

𝐴𝑝

(𝑐+1)2
− 1

𝐴

𝑐+1
𝐵𝑐1𝑝

(𝑐+𝑐1)
2

𝐵𝑐

𝑐+𝑐1
− 2𝑝

). From the Jacobian matrix, Eqs. (16-17) calculated at each 

equilibrium point obtaining the eigenvalues 𝜆1 = 0 and 𝜆2 = 1 for 𝑇0, 𝜆1,2 =
−𝜌±√𝜌2−4Ω

2
 where 𝜌 =

𝐴𝑝̃

(𝑐̃+1)2
−

𝐵𝑐̃

𝑐̃+𝑐1
 

+2𝑝̃ + 1 and Ω =
𝑝̃𝑐̃(2𝑝̃𝑐̃𝐴+4𝑝̃𝐴𝑐1+2𝑐̃

3+4𝑐̃2+2𝑐̃+4𝑐̃2𝑐1+8𝑐̃𝑐1+4𝑐1+2𝑐̃𝑐1
2+4𝑐1

2)

(𝑐̃+1)2(𝑐̃+𝑐1)
2  

+
𝐵𝑐̃(−𝑐̃3−2𝑐̃2−𝑐̃−𝑐̃2𝑐1−2𝑐̃𝑐1−𝑐1+𝑝̃𝑐̃𝐴)+𝑝̃𝑐1(2𝑝̃𝑐1𝐴−𝐴𝐵+2𝑐1)

(𝑐̃+1)2(𝑐̃+𝑐1)
2  for 𝑇1 (

−𝑐1−1+√Ω

2
,
2𝐴𝐵+𝑐1(𝑐1−1)−𝑐1√Ω

2𝐴
) where 

Ω = 4𝐴𝐵 + (𝑐1 − 1)
2. 

The simulation results can be shown in Figure 2. 
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Figure 2. The solution field and phase portrait of the oxygen-phytoplankton system at the 

equilibrium point 𝑻𝟎(𝟎, 𝟎)and 𝑻𝟏 (
−𝒄𝟏−𝟏+√𝛀

𝟐
,
𝟐𝑨𝑩+𝒄𝟏(𝒄𝟏−𝟏)−𝒄𝟏√𝛀

𝟐𝑨
)

 

where 𝛀 = 𝟒𝑨𝑩+ (𝒄𝟏 − 𝟏)
𝟐 

with 𝟐𝑨𝑩+ 𝒄𝟏(𝒄𝟏 − 𝟏) > 𝟎 
 
and 𝑨𝑩 > 𝒄𝟏 

4.2. THE ‘ADVANCE THREE-COMPONENT MODEL 
The corresponding model is described by the following differential equations: 

 
𝑑𝑐

𝑑𝑡
= 𝐴𝑓(𝑐)𝑝 − 𝑐, (20) 

 
𝑑𝑝

𝑑𝑡
= 𝑔(𝑐, 𝑝)𝑝 − 𝑒(𝑝, 𝑧), (21) 

 
𝑑𝑧

𝑑𝑡
= 𝑒(𝑝, 𝑧) − 𝜇𝑧, (22) 

where all notations are the same as in section (12-13). Additionally, here 𝑧: the zooplankton density 

at time 𝑡,
 
and the function of 𝑒(𝑝, 𝑧): the per capita zooplankton growth rate due to predation where 

𝜇: the zooplankton mortality rate. In the model above, we assume that the phytoplankton-

zooplankton interaction is described by the standard prey-predator model with functional response 

of Holling type II. The second negative term of Eq. (21) corresponds to the grazing of zooplankton 

on phytoplankton, hence this predation contributes to predator (zooplankton) growth term 𝛽𝑒(𝑝, 𝑧). 
We consider a Holling type II predator response and use the following parametrization for predation: 

 𝑒(𝑝, 𝑧) =
𝛽𝑝𝑧

𝑝+ℎ
 (23) 

where ℎ: the half-saturation constant and 𝛽 (dimensionless): maximum per capita growth rate of 

zooplankton. With Eq. (23) and Eqs. (18-19), then Eqs. (20–22) take the following form: 

 
𝑑𝑐

𝑑𝑡
= 𝐴 (1 −

𝑐

𝑐+1
) 𝑝 − 𝑐, (24) 

 
𝑑𝑝

𝑑𝑡
= (

𝐵𝑐

𝑐+𝑐1
− 𝑝)𝛾𝑝 −

𝛽𝑝𝑧

𝑝+ℎ
, (25) 

 
𝑑𝑧

𝑑𝑡
=
𝛽𝑝𝑧

𝑝+ℎ
− 𝜇𝑧. (26) 

𝑡′ = 𝑡𝑚, 𝑐′ =
𝑐

𝑐0
, 𝑝′ =

𝛾𝑝

𝑚
, 𝑧′ =

𝛽𝑧

𝑚
, 𝐴̂ =

𝐴

𝑐0𝛾
, 𝐵̂ =

𝐵

𝑚
, 𝑐1̂ =

𝑐1

𝑐0
, ℎ′ =

𝛾ℎ

𝑚
, 𝜇̂ =

𝜇

𝑚
.  

In the equation system (26), the parameter 𝑧′ =
𝛽𝑧

𝑚
⇔ 𝑧 =

𝑚𝑧′

𝛽
 describes that zooplankton 

population density, ℎ′ =
𝛾ℎ

𝑚
⇔ ℎ =

ℎ′𝑚

𝛾
 shows that the maximum growth saturation rate of 

zooplankton and 𝜇̂ =
𝜇

𝑚
⇔ 𝜇 = 𝜇̂𝑚 describes that natural death rate of zooplankton. 

Thus, Eqs. (24-26) is equivalent to the following equation. 

 
𝑑𝑐

𝑑𝑡
= 𝐴 (1 −

𝑐

𝑐+1
) 𝑝 − 𝑐, (27) 

 
𝑑𝑝

𝑑𝑡
= (

𝐵𝑐

𝑐+𝑐1
− 𝑝)𝑝 −

𝑝𝑧

𝑝+ℎ
, (28) 

 
𝑑𝑧

𝑑𝑡
=
𝛽𝑝𝑧

𝑝+ℎ
− 𝜇𝑧. (29) 

Then by giving the discrete time-delay in the rate of zooplankton decline due to predation, the 

equation models become 

 
𝑑𝑐(𝑡)

𝑑𝑡
= 𝐴(1 −

𝑐(𝑡)

𝑐(𝑡)+1
) 𝑝(𝑡) − 𝑐(𝑡), (30) 

 
𝑑𝑝(𝑡)

𝑑𝑡
= (

𝐵𝑐(𝑡)

𝑐(𝑡)+𝑐1
− 𝑝(𝑡)) 𝑝(𝑡) −

𝑝(𝑡−𝜏)𝑧(𝑡)

𝑝(𝑡−𝜏)+ℎ
, (31) 

 
𝑑𝑧(𝑡)

𝑑𝑡
=
𝛽𝑝(𝑡)𝑧(𝑡)

𝑝(𝑡)+ℎ
− 𝜇𝑧(𝑡). (32) 

5. MAIN RESULT 

5.1 EQUILIBRIA 

Theorem 1. 
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From the above Eqs. (30-32), we obtain: 

1. Without the condition, Eqs. (30-32) only has one equilibrium points i.e. the equilibrium point 𝑇0.  
2. If 2𝐴𝐵 + 𝑐1(𝑐1 − 1) > 0 and 𝐴𝐵 > 𝑐1 then Eqs. (30-32) only has two the equilibrium points i.e. 

the equilibrium point 𝑇0 and  𝑇1.  

3. If 𝛽 > 𝜇
 
and 

𝐵(−1+√1+
4𝐴𝜇ℎ

𝛽−𝜇
)

−1+√1+
4𝐴𝜇ℎ

𝛽−𝜇
+2𝑐1

>
𝜇ℎ

𝛽−𝜇
 then Eqs. (30-32) only has two equilibrium points i.e. the 

equilibrium point 𝑇0 and 𝑇2. 

4. If  2𝐴𝐵 + 𝑐1(𝑐1 − 1) > 0, 𝐴𝐵 > 𝑐1, 𝛽 > 𝜇 
and 

𝐵(−1+√1+
4𝐴𝜇ℎ

𝛽−𝜇
)

−1+√1+
4𝐴𝜇ℎ

𝛽−𝜇
+2𝑐1

>
𝜇ℎ

𝛽−𝜇
 then Eqs. (30-32) only 

has two equilibrium points i.e. the equilibrium point 𝑇0, 𝑇1 and 𝑇2. 
Proof: 

Eqs. (27-29) realizes the equilibrium point when 

 𝐴 (1 −
𝑐

𝑐+1
) 𝑝 − 𝑐 = 0, (33) 

 (
𝐵𝑐

𝑐+𝑐1
− 𝑝)𝑝 −

𝑝𝑧

𝑝+ℎ
= 0, (34) 

 
𝛽𝑝𝑧

𝑝+ℎ
− 𝜇𝑧 = 0. (35) 

From Eq. (35) 
𝛽𝑝̃𝑧̃

𝑝̃+ℎ
− 𝜇𝑧̃ = 0 ⇒ 𝑧̃ = 0 ∨ 𝑝̃ =

𝜇ℎ

𝛽−𝜇
. 

(1) Case 𝑧̃ = 0. (
𝐵𝑐̃

𝑐̃+𝑐1
− 𝑝̃) 𝑝̃ −

𝑝̃𝑧̃

𝑝̃+ℎ
= 0 ⇒ 𝑝̃ = 0 ∨ 𝑐̃ =

𝑝̃𝑐1

𝐵−𝑝̃
. 

(a) Case 𝑧̃ = 0 and 𝑝̃ = 0. 𝐴 (1 −
𝑐̃

𝑐̃+1
) 𝑝̃ − 𝑐̃ = 0 ⇔ 𝑐̃ = 0. So we obtain 𝑇0(0, 0, 0). 

(b) Case 𝑧̃ = 0and 𝑐̃ =
𝑝̃𝑐1

𝐵−𝑝̃
. 𝐴 (1 −

𝑐̃

𝑐̃+1
) 𝑝̃ − 𝑐̃ = 0 ⇔ 𝑝̃ =

𝑐̃

𝐴
(𝑐̃ + 1). Substituting 𝑐̃ =

𝑝̃𝑐1

𝐵−𝑝̃
 

into the equation 𝑝̃ =
𝑐̃

𝐴
(𝑐̃ + 1) we get 𝑝̃1,2 =

−𝜎±√𝜎2−4𝐴𝜅

2𝐴
, where 𝜎 = −2𝐴𝐵 − 𝑐1

2 + 𝑐1 

and 𝜅 = 𝐴𝐵2 

−𝐵𝑐1. Considering 𝑝̃ =
−𝜎−√𝜎2−4𝐴𝜅

2𝐴
> 0, then 𝜎2 − 4𝐴𝜅 ≥ 0, 𝜎 < 0 and −𝜎 

−√𝜎2 − 4𝐴𝜅 > 0 ⟺ −4𝐴𝜅 < 0,
 
such that 𝜅 > 0 ⟺ 𝐴𝐵 > 𝑐1. Considering  

𝑝̃ =
−𝜎+√𝜎2−4𝐴𝜅

2𝐴
> 0  then 𝜎2 − 4𝐴𝜅 ≥ 0, 𝜎 < 0

 
and −𝜎 + √𝜎2 − 4𝐴𝜅 > 0 ⟺ −4𝐴𝜅 >

0, so that 𝜅 < 0 ⟺ 𝐴𝐵 < 𝑐1. Therefore, the unique positive root exists for 𝑝̃ =
−𝜎−√𝜎2−4𝐴𝜅

2𝐴
> 0 with the conditions 𝜎2 − 4𝐴𝜅 ≥ 0, 𝜎 < 0 and 𝐴𝐵 > 𝑐1. So we obtain 

𝑇1 (
(
−𝜎−√𝜎2−4𝐴𝜅

2𝐴
)𝑐1

𝐵+
𝜎+√𝜎2−4𝐴𝜅

2𝐴

,
−𝜎−√𝜎2−4𝐴𝜅

2𝐴
, 0) with the conditions 𝜎2 − 4𝐴𝜅 ≥ 0, 𝜎 < 0 and 𝐴𝐵 >

𝑐1. 

Substituting 𝜎 = −2𝐴𝐵 − 𝑐1
2 + 𝑐1 and 𝜅 = 𝐴𝐵2 − 𝐵𝑐1 into the equation 

(
−𝜎−√𝜎2−4𝐴𝜅

2𝐴
)𝑐1

𝐵+
𝜎+√𝜎2−4𝐴𝜅

2𝐴

 we get 

(−(−2𝐴𝐵−𝑐1
2+𝑐1)−√(−2𝐴𝐵−𝑐1

2+𝑐1)
2−4𝐴(𝐴𝐵2−𝐵𝑐1))𝑐1

2𝐴𝐵+(−2𝐴𝐵−𝑐1
2+𝑐1)+√(−2𝐴𝐵−𝑐1

2+𝑐1)
2−4𝐴(𝐴𝐵2−𝐵𝑐1)

=
−𝑐1−1+√Ω

2
, with Ω = 4𝐴𝐵 

+(𝑐1 − 1)
2. Substituting 𝜎 = −2𝐴𝐵 − 𝑐1

2 + 𝑐1 and 𝜅 = 𝐴𝐵2 −𝐵𝑐1 into the equation 

–𝜎−√𝜎2−4𝐴𝜅

2𝐴
 we obtain 

−(−2𝐴𝐵−𝑐1
2+𝑐1)−√(−2𝐴𝐵−𝑐1

2+𝑐1)
2−4𝐴(𝐴𝐵2−𝐵𝑐1)

2𝐴
=
2𝐴𝐵+𝑐1(𝑐1−1)−𝑐1√Ω

2𝐴
. So we 

get 𝑇1 (
−𝑐1−1+√Ω

2
,
2𝐴𝐵+𝑐1(𝑐1−1)−𝑐1√Ω

2𝐴
, 0)where Ω = 4𝐴𝐵 + (𝑐1 − 1)

2 with the conditions 2𝐴𝐵 
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+𝑐1(𝑐1 − 1) > 0 and 𝐴𝐵 > 𝑐1.    
(2) Case 𝑝̃ =

𝜇ℎ

𝛽−𝜇
. (

𝐵𝑐̃

𝑐̃+𝑐1
− 𝑝̃) 𝑝̃ −

𝑝̃𝑧̃

𝑝̃+ℎ
= 0⟺ 𝑧̃ = (

𝜇ℎ

𝛽−𝜇
+ ℎ)(

𝐵𝑐̃

𝑐̃+𝑐1
−

𝜇ℎ

𝛽−𝜇
).  

Substituting 𝑝̃ =
𝜇ℎ

𝛽−𝜇
 into the Eq. (33) we obtain 𝐴 (1 −

𝑐̃

𝑐̃+1
) 𝑝̃ − 𝑐̃ = 0 ⇒ 𝑐̃1,2 = 

−1±√1+
4𝐴𝜇ℎ

𝛽−𝜇

2
. 

Then there is 𝑇2(
−1+√1+

4𝐴𝜇ℎ

𝛽−𝜇

2
,
𝜇ℎ

𝛽−𝜇
,
𝛽ℎ(𝜇𝐵−𝜇𝐵√1+

4𝐴𝜇ℎ

𝛽−𝜇
−𝛽𝐵+𝛽𝐵√1+

4𝐴𝜇ℎ

𝛽−𝜇
+𝜇ℎ−𝜇ℎ√1+

4𝐴𝜇ℎ

𝛽−𝜇
−2𝜇ℎ𝑐1)

(𝛽−𝜇)2(−1+√1+
4𝐴𝜇ℎ

𝛽−𝜇
+2𝑐1)

  ) 

with the conditions 𝛽 > 𝜇
 
and 

𝐵(−1+√1+
4𝐴𝜇ℎ

𝛽−𝜇
)

−1+√1+
4𝐴𝜇ℎ

𝛽−𝜇
+2𝑐1

>
𝜇ℎ

𝛽−𝜇
.  

5.2 STABILITY OF 𝑇2 WITHOUT TIME DELAY 

Theorem 2. 

We have 𝑇0, 𝑇1 and 𝑇2 which three equilibrium points of the Eqs. (16-18) as in theorem 1. 

1. The equilibrium point 𝑇0 is not informative. 

2. The equilibrium point 𝑇1 is node stable and node unstable. 

3. The equilibrium point 𝑇2 is node stable  

Proof. 

The general Jacobian matrix of Eqs. (27-29) is given by 𝐽 =

(

 
 

−𝐴𝑝

(𝑐+1)2
− 1

𝐴

𝑐+1
0

𝐵𝑐1𝑝

(𝑐+𝑐1)
2

𝐵𝑐

𝑐+𝑐1
− 2𝑝 −

𝑧ℎ

(𝑝+ℎ)2
−

𝑝

𝑝+ℎ

0
𝛽ℎ𝑧

(𝑝+ℎ)2
𝛽𝑝

𝑝+ℎ
− 𝜇

)

 
 
.  

(1) At 𝑇0(0, 0, 0), the Jacobian matrix is 𝐽(0, 0, 0) = (
−1 𝐴 0
0 0 0
0 0 −𝜇

). Thus, we get 𝜆1 = −1, 𝜆2 =

0 and 𝜆3 = −𝜇.  
(2) At 𝑇1(𝑐̃, 𝑝̃, 0), the Jacobian matrix is 𝐽(𝑐̃, 𝑝̃, 0) =

(

 
 

−
𝐴𝑝̃

(𝑐̃+1)2
− 1 − 𝜆

𝐴

𝑐̃+1
0

𝐵𝑐1𝑝̃

(𝑐̃+𝑐1)
2

𝐵𝑐̃

𝑐̃+𝑐1
− 2𝑝̃ − 𝜆 −

𝑝̃

𝑝̃+ℎ

0 0
𝛽𝑝̃

𝑝̃+ℎ
− 𝜇 − 𝜆)

 
 
. Thus, we get 𝜆1 =

𝛽𝑝̃

𝑝̃+ℎ
− 𝜇 ∨ 𝜆1,2 =

−𝜅±√𝜅2−4Θ

2
 where 𝜅 =

𝐴𝑝̃

(𝑐̃+1)2
−

𝐵𝑐̃𝛾

𝑐̃+𝑐1
+ 2𝑝̃ + 1 and Θ =

𝐴𝑝̃(−𝐵𝑐̃2−2𝐵𝑐̃𝑐1+2𝑝̃𝑐̃
2+4𝑝̃𝑐̃𝑐1+2𝑝̃𝑐1

2)

(𝑐̃+1)2(𝑐̃+𝑐1)
2  

+
𝐵(𝑐̃4−2𝑐̃3−𝑐̃2−𝑐̃3𝑐1−2𝑐̃

2𝑐1−𝑐̃𝑐1−𝐴𝑐1𝑝̃)

(𝑐̃+1)2(𝑐̃+𝑐1)
2 +

2𝑝̃(𝑐̃4+2𝑐̃3𝑐1+𝑐̃
2𝑐1

2+2𝑐̃3+4𝑐̃2𝑐1+2𝑐1
2𝑐̃+𝑐̃2+2𝑐1𝑐̃)

(𝑐̃+1)2(𝑐̃+𝑐1)
2 .  

(3) At 𝑇2(𝑐̃, 𝑝̃, 𝑧̃) the Jacobian matrix is 𝐽(𝑐̃, 𝑝̃, 𝑧̃) =

(

 
 

−𝐴𝑝̃

(𝑐̃+1)2
− 1

𝐴

𝑐̃+1
0

𝐵𝑐1𝑝̃

(𝑐̃+𝑐1)
2

𝐵𝑐̃

𝑐̃+𝑐1
− 2𝑝̃ −

𝑧̃ℎ

(𝑝̃+ℎ)2
−

𝑝̃

𝑝̃+ℎ

0
𝛽ℎ𝑧̃

(𝑝̃+ℎ)2
𝛽𝑝̃

𝑝̃+ℎ
− 𝜇)

 
 

  

= 𝜆3 − 𝜙𝜆2 − 𝜀𝜆 − 𝜌 = 0. If 𝜙 = −𝜇 −
𝐴𝑝̃

(𝑐̃+1)2
− 1 +

𝐵𝑐̃

𝑐̃+𝑐1
− 2𝑝̃ −

𝑧̃ℎ

(𝑝̃+ℎ)2
+

𝛽𝑝̃

𝑝̃+ℎ
, 𝜀 = −

𝐴𝑝̃𝜇

(𝑐̃+1)2
 

−𝜇 +
𝐵𝑐̃𝜇

𝑐̃+𝑐1
− 2𝑝̃𝜇 −

𝑧̃ℎ𝜇

(𝑝̃+ℎ)2
+

𝐴𝑝̃𝐵𝑐̃

(𝑐̃+1)2(𝑐̃+𝑐1)
−

2𝑝̃2𝐴

(𝑐̃+1)2
−

𝐴𝑝̃𝑧̃ℎ

(𝑐̃+1)2(𝑝̃+ℎ)2
+

𝐵𝑐̃

𝑐̃+𝑐1
− 2𝑝̃ −

𝑧̃ℎ

(𝑝̃+ℎ)2
  

+
𝐴𝑝̃2𝛽

(𝑝̃+ℎ)(𝑐̃+1)2
+

𝛽𝑝̃

𝑝̃+ℎ
−

𝛽𝑝̃𝐵𝑐̃

(𝑐̃+𝑐1)(𝑝̃+ℎ)
+
2𝛽𝑝̃2

𝑝̃+ℎ
+

𝐴𝐵𝑐1𝑝̃

(𝑐̃+1)(𝑐̃+𝑐1)
2 , 𝜌 = −

𝐴𝛽𝑝̃2𝑧̃ℎ

(𝑐̃+1)2(𝑝̃+ℎ)3
−

𝛽𝑝̃ℎ𝑧̃

(𝑝̃+ℎ)3
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−
𝐴𝐵𝛽𝑝̃2𝑐̃

(𝑐̃+1)2(𝑐̃+𝑐1)(𝑝̃+ℎ)
+

2𝐴𝑝̃3𝛽

(𝑝̃+ℎ)(𝑐̃+1)2
+

𝐴𝛽𝑝̃2𝑧̃ℎ

(𝑐̃+1)2(𝑝̃+ℎ)3
−

𝐵𝛽𝑝̃𝑐̃

(𝑐̃+𝑐1)(𝑝̃+ℎ)
+
2𝛽𝑝̃2

𝑝̃+ℎ
+

𝛽𝑝̃𝑧̃ℎ

(𝑝̃+ℎ)3
  

−
𝐴𝐵𝛽𝑝̃2𝑐1

(𝑐̃+1)(𝑐̃+𝑐1)
2(𝑝̃+ℎ)

+
𝐴𝐵𝑐1𝑝̃𝜇

(𝑐̃+1)(𝑐̃+𝑐1)
2 −

2𝐴𝑝̃2𝜇

(𝑐̃+1)2
−

𝐴𝑝̃𝑧̃ℎ𝜇

(𝑐̃+1)2(𝑝̃+ℎ)2
+
𝐵𝑐̃𝜇

𝑐̃+𝑐1
− 2𝑝̃𝜇 −

𝑧̃ℎ𝜇

(𝑝̃+ℎ)2
+

𝐴𝐵𝑝̃𝑐̃𝜇

(𝑐̃+1)2(𝑐̃+𝑐1)
. 

So that, we have the eigenvalues 𝜆1 =
𝜙

3
+

2
1
3(−𝜙2−3𝜀)

3(−27𝜌−2𝜙3−9𝜙𝜀+3√3√27𝜌2+4𝜌𝜙3+18𝜌𝜙𝜀−𝜙2𝜀2−4𝜀3)

1
3

 

−
(−27𝜌−2𝜙3−9𝜙𝜀+3√3√27𝜌2+4𝜌𝜙3+18𝜌𝜙𝜀−𝜙2𝜀2−4𝜀3)

1
3

3.2
1
3

, 𝜆2 =
𝜙

3
−

(1+𝑖√3)(−𝜙2−3𝜀)

3.2
2
3(−27𝜌−2𝜙3−9𝜙𝜀+3√3√27𝜌2+4𝜌𝜙3+18𝜌𝜙𝜀−𝜙2𝜀2−4𝜀3)

1
3

  

+
(1−𝑖√3)(−27𝜌−2𝜙3−9𝜙𝜀+3√3√27𝜌2+4𝜌𝜙3+18𝜌𝜙𝜀−𝜙2𝜀2−4𝜀3)

1
3

6.2
1
3

, 𝜆3 =
𝜙

3
−

(1−𝑖√3)(−𝜙2−3𝜀)

3.2
2
3(−27𝜌−2𝜙3−9𝜙𝜀+3√3√27𝜌2+4𝜌𝜙3+18𝜌𝜙𝜀−𝜙2𝜀2−4𝜀3)

1
3

  

+
(1+𝑖√3)(−27𝜌−2𝜙3−9𝜙𝜀+3√3√27𝜌2+4𝜌𝜙3+18𝜌𝜙𝜀−𝜙2𝜀2−4𝜀3)

1
3

6.2
1
3

.     

 

5.3 STABILITY OF 𝑇2 WITH TIME DELAY 
Theorem 3 

Suppose that the conditions 𝛽 > 𝜇
 
and 

𝐵(−1+√1+
4𝐴𝜇ℎ

𝛽−𝜇
)

−1+√1+
4𝐴𝜇ℎ

𝛽−𝜇
+2𝑐1

>
𝜇ℎ

𝛽−𝜇
 are satisfied and given 𝜏𝑘 and 𝜔𝑘 >

0 is obtained from the equation 𝜔𝑘 = √𝑧
∗ where 𝑧3 + 𝐵𝑧2 + 𝐶𝑧 + 𝐷 = 0  

and 𝜔6 + 𝐴𝜔4 + 𝐵𝜔2 + 𝐶 = 0, with 

𝐴 = 𝑏7
2 + 2𝑏5𝑏6 + 2𝑏2𝑏3 + 𝑏1

2 − 𝑏4
2,   

𝐵 = 2𝑏1
2𝑏5𝑏6 + 𝑏1

2𝑏7
2 + 𝑏2

2𝑏3
2 + 2𝑏2𝑏3𝑏5𝑏6 + 2𝑏2𝑏3𝑏7

2 + 𝑏5
2𝑏6

2 − 𝑏1
2𝑏4

2 − 𝑏4
2𝑏7

2,  

𝐶 = 𝑏1
2𝑏5

2𝑏6
2 + 2𝑏1𝑏2𝑏3𝑏5𝑏6𝑏7 + 𝑏2

2𝑏3
2𝑏7

2 − 𝑏1
2𝑏4

2𝑏7
2
  

with the Routh Hurwitz conditions where 

𝑏1 =
−𝐴𝑝̃

(𝑐̃+1)2
− 1, 𝑏2 =

𝐴

𝑐̃+1
, 𝑏3 =

𝐵𝑐1𝑝̃

(𝑐̃+𝑐1)
2 , 𝑏4 =

𝐵𝑐̃

𝑐̃+𝑐1
− 2𝑝̃ −

𝑧̃ℎ

(𝑝̃+ℎ)2
, 𝑏5 = −

𝑝̃

𝑝̃+ℎ
, 𝑏6 =

𝛽ℎ𝑧̃

(𝑝̃+ℎ)2
,   

𝑏7 =
𝛽𝑝̃

𝑝̃+ℎ
− 𝜇 furthermore 𝑇2 is the equilibrium of Eqs. (16-18), then

 
1. The interior equilibrium 𝑇2 of Eqs. (16-18) is stable when 𝜏 < 𝜏𝑘 and unstable when 𝜏 > 𝜏𝑘 .  
2. Eqs. (16-18) undergo a Hopf bifurcation at the interior equilibrium 𝑇2 when 𝜏 = 𝜏𝑘 .  
Proof. 

The results of the analysis showed that the equilibrium point 𝑇2 is stable. By giving the time-

delay 𝜏 > 0 will cause the change in the stability of the equilibrium point 𝑇2. To analyze the stability 

of the equilibrium point 𝑇2 with time-delay, we linearize the model (27-29) around the equilibrium 

point 𝑇2, then we obtain the linearized model 

 
𝑑𝑐

𝑑𝑡
= 𝑏1𝑐(𝑡) + 𝑏2𝑝(𝑡), (36) 

 
𝑑𝑝

𝑑𝑡
= 𝑏3𝑐(𝑡) + 𝑏4𝑝(𝑡 − 𝜏) + 𝑏5𝑧(𝑡), (37) 

 
𝑑𝑧

𝑑𝑡
= 𝑏6𝑝(𝑡) + 𝑏7𝑧(𝑡), (38) 

where 𝑏1 =
−𝐴𝑝̃

(𝑐̃+1)2
− 1, 𝑏2 =

𝐴

𝑐̃+1
, 𝑏3 =

𝐵𝑐1𝑝̃

(𝑐̃+𝑐1)
2 , 𝑏4 =

𝐵𝑐̃

𝑐̃+𝑐1
− 2𝑝̃ −

𝑧̃ℎ

(𝑝̃+ℎ)2
, 𝑏5 = −

𝑝̃

𝑝̃+ℎ
, 𝑏6 =

𝛽ℎ𝑧̃

(𝑝̃+ℎ)2
,   

𝑏7 =
𝛽𝑝̃

𝑝̃+ℎ
− 𝜇.    
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Suppose the solution of Eqs. (36-38) is 

 𝑐(𝑡) = 𝑙𝑒𝜆𝜏, 𝑝(𝑡) = 𝑚𝑒𝜆𝜏, 𝑧(𝑡) = 𝑛𝑒𝜆𝜏.  (39) 

Substituting Eq. (39) into Eqs. (36-38), then divided 𝑒𝜆𝜏 such that we get 

 𝑙𝜆 = 𝑏1𝑙 + 𝑏2𝑚, (40) 

 𝑚𝜆 = 𝑏3𝑙 + 𝑏4𝑚+ 𝑏5𝑛, (41) 

 𝑛𝜆 = 𝑏6𝑚𝑒
−𝜆𝜏 + 𝑏7𝑛. (42) 

Eqs. (40-42) can be written in the following form. 

[
𝑙𝜆
𝑚𝜆
𝑛𝜆
] = [

𝑏1 𝑏2 0

𝑏3 𝑏4𝑒
−𝜆𝜏 𝑏5

0 𝑏6 𝑏7

] [
𝑙
𝑚
𝑛
]. 

So we get the following characteristic equation. 

|

𝑏1 − 𝜆 𝑏2 0
𝑏3 𝑏4 − 𝜆 𝑏5
0 𝑏6𝑒

−𝜆𝜏 𝑏7 − 𝜆

| = 0  

⇔ 𝜆3 + (−𝑏1 − 𝑏4𝑒
−𝜆𝜏 − 𝑏7)𝜆

2 + (𝑏1𝑏4𝑒
−𝜆𝜏 + 𝑏1𝑏7 + 𝑏4𝑏7𝑒

−𝜆𝜏 − 𝑏2𝑏3 − 𝑏5𝑏6)𝜆  

−𝑏1𝑏4𝑏7𝑒
−𝜆𝜏 + 𝑏2𝑏3𝑏7 + 𝑏5𝑏6𝑏1 = 0  

The eigenvalues of the characteristic equation (43) are either real and negative or complex conjugate 

with negative real parts if only if −𝑏1 − 𝑏4 − 𝑏7 > 0, 𝑏1𝑏4 + 𝑏1𝑏7 + 𝑏4𝑏7 − 𝑏2𝑏3 − 𝑏5𝑏6 > 0 and 

−𝑏1𝑏4𝑏7 + 𝑏2𝑏3𝑏7 + 𝑏5𝑏6𝑏1 > 0 [5]. So with the existence of time-delay, the equilibrium point 𝑇2 

is stable if and only if both conditions and are satisfied. Such that the eigenvalues of the equation 

(43) we let 𝜆 = 𝜇 ± 𝑖𝜔 with 𝜇 = 0 and 𝜔 > 0 (𝜆 = ±𝑖𝜔). To see the change in the stability of the 

equation model with time delay, then that eigenvalues are substituted into the equation (43) such 

that we obtain the roots of the characteristic equation 
∆(𝑖𝜔, 𝜏) = 𝑏1𝑏4𝜔 𝑠𝑖𝑛 𝜔𝜏 + 𝑏4𝑏7𝜔 𝑠𝑖𝑛 𝜔𝜏 + 𝑏4𝜔

2 𝑐𝑜𝑠 𝜔𝜏 + 𝑏1𝜔
2 + 𝑏7𝜔

2 − 𝑏1𝑏4𝑏7 𝑐𝑜𝑠 𝜔𝜏 + 𝑏5𝑏6𝑏1
+ 𝑏2𝑏3𝑏7 

+(−𝑏4𝜔
2 𝑠𝑖𝑛 𝜔 𝜏 − 𝜔3 + 𝑏1𝑏4𝑏7 𝑠𝑖𝑛 𝜔 𝜏 + 𝑏1𝑏4𝜔 𝑐𝑜𝑠 𝜔𝜏 + 𝑏4𝑏7𝜔 𝑐𝑜𝑠 𝜔𝜏 + 𝑏1𝑏7𝜔 − 𝑏2𝑏3𝜔 − 𝑏5𝑏6𝜔)𝑖    

Equation (44) is zero if the imaginary and real part are zero, so we obtain 

−𝜔3 + 𝑏1𝑏7𝜔 − 𝑏2𝑏3𝜔 − 𝑏5𝑏6𝜔 = 𝑏4𝜔
2 𝑠𝑖𝑛 𝜔𝜏 − 𝑏1𝑏4𝑏7 𝑠𝑖𝑛𝜔𝜏 − 𝑏1𝑏4𝜔𝑐𝑜𝑠𝜔𝜏 −

𝑏4𝑏7𝜔𝑐𝑜𝑠𝜔𝜏 and −𝑏1𝜔
2 − 𝑏7𝜔

2 − 𝑏5𝑏6𝑏1 − 𝑏2𝑏3𝑏7  = 𝑏1𝑏4𝜔𝑠𝑖𝑛𝜔𝜏 + 𝑏4𝑏7𝜔𝑠𝑖𝑛𝜔𝜏 +
𝑏4𝜔

2 𝑐𝑜𝑠 𝜔𝜏 
−𝑏1𝑏4𝑏7 𝑐𝑜𝑠 𝜔𝜏.    
Furthermore, eliminating Eqs. (45-46) to 𝜏 by Squaring both sides gives 

𝑏1
2𝑏7

2𝜔2 − 2𝑏1𝑏2𝑏3𝑏7𝜔
2 − 2𝑏1𝑏5𝑏6𝑏7𝜔

2 − 2𝑏1𝑏7𝜔
4 + 𝑏2

2𝑏3
2𝜔2 + 2𝑏2𝑏3𝑏5𝑏6𝜔

2 + 2𝑏2𝑏3𝜔
4  

+𝑏5
2𝑏6

2𝜔2 + 2𝑏5𝑏6𝜔
4 +𝜔6 = 𝑏1

2𝑏4
2𝑏7

2 𝑠𝑖𝑛2𝜔𝜏 + 2𝑏1
2𝑏4

2𝑏7𝜔𝑐𝑜𝑠𝜔𝜏 𝑠𝑖𝑛 𝜔 𝜏  

+𝑏1
2𝑏4

2𝜔2 𝑐𝑜𝑠2𝜔𝜏 + 2𝑏1𝑏4
2𝑏7

2𝜔𝑐𝑜𝑠𝜔𝜏 𝑠𝑖𝑛 𝜔𝜏 + 2𝑏1𝑏4
2𝑏7𝜔

2 𝑐𝑜𝑠2𝜔𝜏 −

2𝑏1𝑏4
2𝑏7𝜔

2 𝑠𝑖𝑛2𝜔𝜏  

−2𝑏1𝑏4
2𝜔3 𝑐𝑜𝑠 𝜔𝜏 𝑠𝑖𝑛 𝜔 𝜏 + 𝑏4

2𝑏7
2𝜔2 𝑐𝑜𝑠2 𝜔𝜏 − 2𝑏4

2𝑏7𝜔
3 𝑐𝑜𝑠 𝜔𝜏 𝑠𝑖𝑛 𝜔𝜏 + 𝑏4

2𝜔4 𝑠𝑖𝑛2𝜔𝜏  
and 

𝑏1
2𝑏5

2𝑏6
2 + 2𝑏1

2𝑏5𝑏6𝜔
2 + 𝑏1

2𝜔4 + 2𝑏1𝑏2𝑏3𝑏5𝑏6𝑏7 + 2𝑏1𝑏2𝑏3𝑏7𝜔
2 + 2𝑏1𝑏5𝑏6𝑏7𝜔

2 +
2𝑏1𝑏7𝜔

4  

+𝑏2
2𝑏3

2𝑏7
2 + 2𝑏2𝑏3𝑏7

2𝜔2 + 𝑏7
2𝜔4 = 𝑏1

2𝑏4
2𝑏7

2 𝑐𝑜𝑠2𝜔𝜏 − 2𝑏1
2𝑏4

2𝑏7𝜔𝑐𝑜𝑠𝜛 𝜏 𝑠𝑖𝑛𝜛 𝜏  

+𝑏1
2𝑏4

2𝜔2 𝑠𝑖𝑛2𝜔𝜏 − 2𝑏1𝑏4
2𝑏7

2𝜔𝑐𝑜𝑠𝜛 𝜏 𝑠𝑖𝑛𝜛 𝜏 − 2𝑏1𝑏4
2𝑏7𝜔

2 𝑐𝑜𝑠2𝜔𝜏 +

2𝑏1𝑏4
2𝑏7𝜔

2 𝑠𝑖𝑛2𝜔𝜏  

+2𝑏1𝑏4
2𝜔3 𝑐𝑜𝑠𝜛 𝜏 𝑠𝑖𝑛𝜛 𝜏 + 𝑏4

2𝑏7
2𝜔2 𝑠𝑖𝑛2𝜔𝜏 + 2𝑏4

2𝑏7𝜔
3 𝑐𝑜𝑠𝜛 𝜏 𝑠𝑖𝑛𝜛 𝜏 + 𝑏4

2𝜔4 𝑐𝑜𝑠2 𝜔𝜏  
Then adding both Eqs. (47-48) and regrouping by powers of 𝜔, we obtain the following fourth 

degree polynomial 

 𝜔6 + 𝐴𝜔4 + 𝐵𝜔2 + 𝐶 = 0, 
with 



 
 

555 
 

JURNAL MATEMATIKA, STATISTIKA DAN KOMPUTASI 
Gesti Essa Waldhani 

 

 

𝐴 = 𝑏7
2 + 2𝑏5𝑏6 + 2𝑏2𝑏3 + 𝑏1

2 − 𝑏4
2,

  
𝐵 = 2𝑏1

2𝑏5𝑏6 + 𝑏1
2𝑏7

2 + 𝑏2
2𝑏3

2 + 2𝑏2𝑏3𝑏5𝑏6 + 2𝑏2𝑏3𝑏7
2 + 𝑏5

2𝑏6
2 − 𝑏1

2𝑏4
2 − 𝑏4

2𝑏7
2,  

𝐶 = 𝑏1
2𝑏5

2𝑏6
2 + 2𝑏1𝑏2𝑏3𝑏5𝑏6𝑏7 + 𝑏2

2𝑏3
2𝑏7

2 − 𝑏1
2𝑏4

2𝑏7
2.  

To simplify the calculation suppose 𝑧 = 𝜔2, so Eq. (49) changes to  

 𝑧3 + 𝐴𝑧2 + 𝐵𝑧 + 𝐶 = 0, (50) 

the root value of equation (50) is determined by Lemma 1 as follows. 

Lemma 1. [9] 

Define 𝜉 = 𝐴2 − 3𝐶. 
(i) If 𝐶 < 0, then equation (50) has unique simple positive root. 

(ii) If 𝐶 ≥ 0 and 𝜉 < 0, then equation (50) does not have real roots. 

(iii) If 𝐶 ≥ 0 and 𝜉 ≥ 0, then the equation (50) has two possitive roots if only if 𝑧 =
1

3
(−𝐴 + √𝜉) >

0 and ℎ(𝑧) ≤ 0. 
Suppose that equation (50) has simple positive roots. Without loss of generality, we assume that it 

has three positive roots, denoted by 𝑧1, 𝑧2 and 𝑧3 respectively. Then equation (50) has three positive 

roots, say 𝜔1 = √𝑧1, 𝜔2 = √𝑧2 and 𝜔3 = √𝑧3.  

Furthermore substituting 𝜔𝑘 into the Eqs. (45-46) and solving for 𝜏𝑘, we get 
 𝜏𝑘 =
1

𝜔𝑘
𝑡𝑎𝑛−1 (

𝑏1
2𝑏4𝑏5𝑏6𝜔𝑘+𝑏1

2𝑏4𝑏7
2𝜔𝑘+𝑏1

2𝑏4𝜔𝑘
3+𝑏2𝑏3𝑏4𝑏7

2𝜔𝑘+𝑏2𝑏3𝑏4𝑏7
2𝜔𝑘+𝑏2𝑏3𝑏4𝜔𝑘

3+𝑏4𝑏5𝑏6𝜔𝑘
3+𝑏4𝑏7

2𝜔𝑘
3+𝑏4𝜔𝑘

5

−𝑏1
2𝑏4𝑏5𝑏6𝑏7−𝑏1𝑏2𝑏3𝑏4𝑏7

2−𝑏1𝑏2𝑏3𝑏4𝜔𝑘
2−𝑏4𝑏5𝑏6𝑏7𝜔𝑘

2
) +

2𝑘𝜋

𝜔𝑘
,  

𝑘 = 0, 1, 2,⋯                                                                                                                                   
(51) 

Lemma 2  

If one of the following is true. 

(1) 𝐶 < 0 and ℎ′(𝜔𝑏𝑖𝑓) ≠ 0; 

(2) 𝐶 ≥ 0, 𝜉 > 0, 𝑧̅ > 0 and ℎ′(𝑧̅) < 0; 

then 
𝑑𝑅𝑒𝜆(𝜏𝑏𝑖𝑓)

𝑑𝜏
≠ 0, 

where 𝜏𝑏𝑖𝑓 and 𝜔𝑏𝑖𝑓 defined in Eq. (50).   

Further differentiating the Eq. (43) to 𝜏, then we obtain 

𝜆3 + 𝑃𝜆2 +𝑄𝜆 + 𝑅 + (𝑆𝜆2 + 𝑇𝜆 + 𝑈)𝑒−𝜆𝜏 = 0  

𝑃 = −𝑏1 − 𝑏7  

𝑄 = 𝑏1𝑏7 − 𝑏2𝑏3 − 𝑏5𝑏6  

𝑅 = 𝑏2𝑏3𝑏7 + 𝑏5𝑏6𝑏1  

𝑆 = −𝑏4  

𝑇 = 𝑏1𝑏4 + 𝑏4𝑏7   

𝑈 = −𝑏1𝑏4𝑏7  
 

𝜆3 + 𝑃𝜆2 +𝑄𝜆 + 𝑅 + 𝑆𝜆2𝑒−𝜆𝜏 + 𝑇𝜆𝑒−𝜆𝜏 + 𝑈𝑒−𝜆𝜏 = 0  

⟺
𝑑(𝜆3)

𝑑𝜆

𝑑𝜆

𝑑𝜏
+ 𝑃

𝑑(𝜆2)

𝑑𝜆

𝑑𝜆

𝑑𝜏
+ 𝑄

𝑑𝜆

𝑑𝜆

𝑑𝜆

𝑑𝜏
+ 𝑆 {𝜆2 [

𝑑(𝑒−𝜆𝜏)

𝑑(−𝜆𝜏)
(−𝜆. 1 + 𝜏

𝑑(−𝜆)

𝑑𝜆

𝑑𝜆

𝑑𝜏
)] + 𝑒−𝜆𝜏

𝑑(𝜆2)

𝑑𝜆

𝑑𝜆

𝑑𝜏
} +

𝑇 {𝜆 [
𝑑(𝑒−𝜆𝜏)

𝑑(−𝜆𝜏)
(−𝜆. 1 + 𝜏

𝑑(−𝜆)

𝑑𝜆

𝑑𝜆

𝑑𝜏
)] + 𝑒−𝜆𝜏

𝑑𝜆

𝑑𝜆

𝑑𝜆

𝑑𝜏
} + 𝑈 [

𝑑(𝑒−𝜆𝜏)

𝑑(−𝜆𝜏)
(−𝜆. 1 + 𝜏

𝑑(−𝜆)

𝑑𝜆

𝑑𝜆

𝑑𝜏
)] = 0  

⟺ 3𝜆2
𝑑𝜆

𝑑𝜏
+ 2𝑃𝜆

𝑑𝜆

𝑑𝜏
+ 𝑄

𝑑𝜆

𝑑𝜏
− 𝑆𝜆3𝑒−𝜆𝜏 − 𝑆𝜆2𝜏

𝑑𝜆

𝑑𝜏
𝑒−𝜆𝜏+2𝑆𝜆

𝑑𝜆

𝑑𝜏
𝑒−𝜆𝜏 − 𝑇𝜆2𝑒−𝜆𝜏 −

𝑇𝜆𝜏
𝑑𝜆

𝑑𝜏
𝑒−𝜆𝜏+𝑇

𝑑𝜆

𝑑𝜏
𝑒−𝜆𝜏 − 𝑈𝜆𝑒−𝜆𝜏 − 𝑈𝜏

𝑑𝜆

𝑑𝜏
𝑒−𝜆𝜏 = 0  

⟺
𝑑𝜆

𝑑𝜏
=

(𝑆𝜆2+𝑇𝜆+𝑈)𝜆𝑒−𝜆𝜏

3𝜆2+2𝑃𝜆+𝑄−(𝑆𝜆2+𝑇𝜆+𝑈)𝜏𝑒−𝜆𝜏+(2𝑆𝜆+𝑇)𝑒−𝜆𝜏
.   

From equation (52), we have 𝑒−𝜆𝜏 =
−𝜆3−𝑃𝜆2−𝑄𝜆 

𝑆𝜆2+𝑇𝜆+𝑈
. Then we get 
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𝑑𝜆

𝑑𝜏
=

𝜆(−𝜆3−𝑃𝜆2−𝑄𝜆 )

3𝜆2+2𝑃𝜆+𝑄−𝜏(−𝜆3−𝑃𝜆2−𝑄𝜆 )+(2𝑆𝜆+𝑇)𝑒−𝜆𝜏
.  

Re (
𝑑𝜆

𝑑𝜏
)
𝜏=𝜏𝑏

  

=
𝜆(−𝜆3−𝑃𝜆2−𝑄𝜆 )

3𝜆2+2𝑃𝜆+𝑄−𝜏(−𝜆3−𝑃𝜆2−𝑄𝜆 )+(2𝑆𝜆+𝑇)𝑒−𝜆𝜏
  

=
𝑖𝜔𝑏(−(𝑖𝜔𝑏)

3−𝑃(𝑖𝜔𝑏)
2−𝑄𝑖𝜔𝑏)

3(𝑖𝜔𝑏)2+2𝑃𝑖𝜔𝑏+𝑄−𝜏𝑏(−(𝑖𝜔𝑏)3−𝑃(𝑖𝜔𝑏)2−𝑄𝑖𝜔𝑏)+(2𝑆𝑖𝜔𝑏+𝑆)(cos𝜔𝑏𝜏𝑏−𝑖 sin𝜔𝑏𝜏𝑏)
  

=
−𝜔𝑏

4+𝑖𝐽𝜔𝑏
3+𝐾𝜔𝑏

2

−3𝜔𝑏
2+2𝑃𝑖𝜔𝑏+𝑄−𝜏𝑏𝑖𝜔𝑏

3−𝜏𝑏𝑃𝜔𝑏
2+𝜏𝑏𝑄𝑖𝜔𝑏+2𝑆𝑖𝜔𝑏 cos𝜔𝑏𝜏𝑏+2𝑆𝜔𝑏 sin𝜔𝑏𝜏𝑏+𝑇 cos𝜔𝑏𝜏𝑏−𝑇𝑖 sin𝜔𝑏𝜏𝑏

   

=
−𝜔𝑏

4+𝑄𝜔𝑏
2+𝑃𝜔𝑏

3𝑖

𝑃1
2+𝑄1

2 . (𝑃1 − 𝑄1𝑖)  

with 

𝑃1 = −3𝜔𝑏
2 + 𝑄 − 𝜏𝑏𝑃𝜔𝑏

2 + 2𝑆𝜔𝑏 sin𝜔𝑏𝜏𝑏 + 𝑇 cos𝜔𝑏𝜏𝑏  
𝑄1 =  2𝑃𝜔𝑏 − 𝜏𝑏𝜔𝑏

3 + 𝜏𝑏𝑄𝜔𝑏 + 2𝑆𝜔𝑏 cos𝜔𝑏𝜏𝑏 − 𝑆 sin𝜔𝑏𝜏𝑏  

=
3𝜔𝑏

6−4𝑄𝜔𝑏
4+2𝑃2𝜔𝑏

4+𝑄2𝜔𝑏2

𝑃1
2+𝑄1

2   

Hence 
𝑑𝜆

𝑑𝜏
|
𝜏=𝜏𝑏

=
𝜔𝑏

2(3𝜔𝑏
4+(−4𝑄+2𝑃2)𝜔𝑏

2)

𝑃1
2+𝑄1

2 ≠ 0  

5.4 SIMULATIONS AT 𝑻𝟐 WITH TIME DELAY  

The numerical simulations of the phytoplankton-zooplankton-dissolved oxygen model using 

Holling II with time delay performed to show the effect of time delay on the equilibrium point 𝑇2 

stability. The parameter values used for the simulations at equilibrium point 𝑇2 with time delay 

presented as following. 

𝐵 = 1;  𝛽 = 2;  𝜇 = 0,6;  ℎ = 0,35;  𝐴 = 1; 𝑐1 = 0,01. Hence obtained  

𝑐̃ =
−1+√1+

4𝐴𝜇ℎ

𝛽−𝜇

2
=
−1+√1+

4.0,53.0,5.0,1

1−0,5

2
= 0,647508942.   

𝑝̃ =
𝜇ℎ

𝛽−𝜇
=
0,5.0,1

1−0,5
= 0,15.  

𝑧̃ =
𝛽ℎ(−𝜇𝐵𝑐̃+𝛽𝐵𝑐̃−𝜇ℎ𝑐̃−𝜇ℎ𝑐1)

(𝛽−𝜇)2(𝑐̃+𝑐1)
= 0,4173955408  

So obtained the equilibrium point 𝑇2(0,647508942; 0,15; 0,4173955408). 
Then from the parameter values presented in Table 1, obtained 

𝑏1 =
−𝐴𝑝̃

(𝑐̃+1)2
− 1 = −1,055263158.  

𝑏2 =
𝐴

𝑐̃+1
= 0,6069769787.  

𝑏3 =
𝐵𝑐1𝑝̃

(𝑐̃+𝑐1)
2 = 0,003469668090.  

𝑏4 =
𝐵𝑐̃

𝑐̃+𝑐1
− 2𝑝̃ −

𝑧̃ℎ

(𝑝̃+ℎ)2
= 0,1004373242.  

𝑏5 = −
𝑝̃

𝑝̃+ℎ
= −0,3.  

𝑏6 =
𝛽ℎ𝑧̃

(𝑝̃+ℎ)2
= 1,168707514.  

𝑏7 =
𝛽𝑝̃

𝑝̃+ℎ
− 𝜇 =

1.0,1

0,1+0,1
− 0,5 = 0.  

𝜔6 + (𝑏7
2 + 2𝑏5𝑏6 + 2𝑏2𝑏3 + 𝑏1

2 − 𝑏4
2)𝜔4 + (2𝑏1

2𝑏5𝑏6 + 𝑏1
2𝑏7

2 + 𝑏2
2𝑏3

2 + 2𝑏2𝑏3𝑏5𝑏6 +

2𝑏2𝑏3𝑏7
2 + 𝑏5

2𝑏6
2 − 𝑏1

2𝑏4
2 − 𝑏4

2𝑏7
2)𝜔2 + 𝑏1

2𝑏5
2𝑏6

2 + 2𝑏1𝑏2𝑏3𝑏5𝑏6𝑏7 + 𝑏2
2𝑏3

2𝑏7
2
  

−𝑏1
2𝑏4

2𝑏7
2 = 0.  

⇔ 𝜔6 + 0,4064801858𝜔4 − 0,6693727703𝜔2 + 0,1368912641  

Because of 𝜔 > 0, then selected 𝜔𝑘 = 0,641685611351827.  
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Then searched the value of 𝜏𝑘 by substituting the values 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7 and 𝜔𝑘 into the 

following equation. 

𝜏𝑘 =
1

𝜔𝑘
𝑡𝑎𝑛−1 (

−𝑏4𝜔𝑘
3−𝑏7𝜔𝑘

3−𝑏2𝑏3𝑏7𝜔𝑘−𝑏1
2𝑏4𝜔𝑘−𝑏1

2𝑏7𝜔𝑘+𝑏1𝑏2𝑏3𝜔𝑘

𝑏1
2𝜔𝑘

2+𝑏1𝑏2𝑏3𝑏7−𝑏1
2𝑏4𝑏7+𝜔𝑘

4−𝜔𝑘
2𝑏4𝑏7+𝑏2𝑏3𝜔𝑘

2 ) +
2𝑘𝜋

𝜔𝑘
, 𝑘 = 0, 1, 2,⋯  

⟺ 𝜏𝑘 = 1,55.    

In this article only discussed the value of time delay when, before and after the delay timeout 

value in the distance 𝑘 = 0.  
In addition to the parameters mentioned in Table 3, it is necessary to select the time delay 

parameters indicated to show changes in equilibrium point stability. In this simulation will be 

provided three cases to indicate the existence of Hopf bifurcation. 

Table 5.4.1 Selection of time delay and model stability 

No Case 𝜏 Equilibrium Point Stability 

1 𝜏 < 𝜏𝑘 1,3 stable spiral 

2 𝜏 = 𝜏𝑘 1,55 stable spiral 

2 𝜏 > 𝜏𝑘 1,7 Unstable spiral 

 

Simulation at 𝑻𝟐 for the case 𝝉 < 𝝉𝒌 

In this case, the parameter value used is 𝜏 = 1,3 < 𝜏𝑘. The simulation results can be seen in Figure 

3. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The solution field potret phase of predator-prey system at the equilibrium 

point 𝑇2 in the case 𝜏 < 𝜏𝑘 

The Solution field shows that there are oscillations with increasingly smaller deviations, so that 

the oxygen-phyto-zooplankton develops and eventually stabilizes to a certain value. 

Figure 3 also shows that point 𝑇2 in the case 𝜏 < 𝜏𝑘 is stable. So in this condition there is stability 

in the amount of oxygen-phyto-zooplankton. 

 

 

Simulation at 𝑻𝟐 for the case 𝝉 = 𝝉𝒌 

In this case, the parameter value used is 𝜏 = 1,55 = 𝜏𝑘. The simulation results can be seen in Figure 

4. 
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Figure 4. The solution field potret phase of predator-prey system at the equilibrium 

point 𝑇2 in the case 𝜏 = 𝜏𝑘 

For the solution field, the system shows oscillations with increasingly smaller deviations, so that 

the oxygen-phyto-zooplankton develops and eventually stabilizes to a certain value.  

 Figure 4 also shows that 𝑇2 is stable. So in this condition there is stability in the amount of 

oxygen-phyto-zooplankton. 

 

Simulation at 𝑻𝟐 for the case 𝝉 > 𝝉𝒌 

In this case, the parameter value used is 𝜏 = 1,7 > 𝜏𝑘. The simulation results can be seen in Figure 

5. 
 

 

 

 

 

Figure 5. The solution field potret phase of predator-prey system at the equilibrium point 𝑇2 in the 

case 𝜏 > 𝜏𝑘 
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Figure 5 shows that there are oscillations with increasingly large deviations, so that the 

oxygen-phyto-zooplankton develops and at the end of time the oxygen-phyto-zooplankton decreases 

in number and almost becomes extinct. Figure 4 shows that 𝑇2 is unstable. So in this condition there 

is no stability in the amount of oxygen-phyto-zooplankton. 
 

6. CONCLUSIONS 

From the above discussion, we can be concluded that based on the non-dimensional model, we 

obtain the following predator-prey model using Holling type II functional response with the time 

delay in a facultative waste stabilization pond  

To analyze the existence of Hopf bifurcation, the predator-prey population dynamics was 

simulated based on three cases, by increasing the time-delay in the growth rate of the predator 

population (𝜏𝑘). By choosing an exact parameter value (𝜏𝑘), we can show the existence of Hopf 

bifurcation. In the case 𝜏 = 𝜏𝑘 the stable spiral changed into an unstable spiral and also observed 

the presence of limit cycles. This is known as Hopf bifurcation. Then, to illustrate the model, 

simulation model was carried out using the Maple 12 software and mathematica 9. The model 

simulations gave the same result with the analysis. 
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