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Abstract  
In practice, the assumptions of normality are often not met, this causes the estimation of the 

resulting parameters to be less efficient. Problems with the assumption that normality is not 

met can be overcome by resampling. The use of resampling allows data to be applied free 

from distribution assumptions. In this study, a simulation study was carried out by applying 

bootstrap resampling and jackknife resampling (delete-5) on path analysis assuming that the 

normality of the alignment was not met and the resampling amount set at 1000 with the degree 

of closeness between variables consisting of low closeness, medium closeness, high closeness 

and closeness level representing the level low to high closeness. Based on the simulation 

results, the resampling 1000 magnitude is able to overcome the problem of the assumptions of 

unmet normality. In addition, a comparison between bootstrap and jackknife resampling for 

conditions of side normality assumptions is not fulfilled and the closeness of the relationship 

between low, medium, high and closeness variables representing low to high closeness levels, 

the estimation results of path analysis parameters obtained by resampling jackknife are more 

efficient than resampling bootstrap. 

 

Keywords:   Resampling bootstrap, Resampling jackknife, and Efficiency. 

 

1.  INTRODUCTION  

Path analysis is an analysis that can facilitate complex forms of relationships and the presence 

of intervening endogenous variables. Path analysis is the development of regression analysis. Path 

analysis has several assumptions, one of which is the residual normality or, in other words, the 

residual normal distribution. But, sometimes, the assumption of normality is not fulfilled, causing 

the resulting hypothesis testing less efficient. The problem of unfulfilled normality assumption 

can be overcome by resampling. The use of resampling allows data to be free from distribution 

assumptions or not to require normality assumption [11]. 

Based on previous studies, the Jackknife resampling method is more appropriate for 

estimating parameter values and parameter confidence interval values in the regression analysis 

with a narrow range of confidence intervals [1]. In algorithm studies of bootstrap and jackknife 

(delete-one) resampling methods for parameter estimation in the regression analysis, it is known 

that the parameter bias, standard errors, and confidence interval of Jackknife confidence are 
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greater than the Bootstrap [8]. Therefore, in this research, we are interested in comparing the 

bootstrap and jackknife resampling methods in path analysis. 

The data used in this research resulted from a simulation study. Based on the simulation 

study, Bootstrap resampling method can be used as an alternative method that can produce a very 

close regression parameter estimation to population parameters and fairly narrow confidence 

interval [12]. 

In contrast to previous studies, this research applied resampling methods in path analysis. 

Besides, this research was also intended to determine which resampling method is more efficient 

(bootstrap or jackknife (delete-5)) with a simulation study. Efficiency is relatively used to 

compare the variance of predictors between bootstrap and jackknife resampling methods. 

                                                                                  

 

2. LITERATURE REVIEW  

Path analysis is an analysis developed from a linear regression analysis. According to [6], 

path analysis is an analysis used to evaluate direct and indirect effects through another cause. [9] 

stated that path analysis is a regression analysis with standardized variables. Another 

understanding suggests that path analysis determines the strength of the path shown in a path 

diagram [5]. Based on some of these notions, path analysis is an analysis used to study the direct 

and indirect effects of certain variables with standardized variables and it employs path diagrams 

to illustrate the relationships between variables. 

According to [7], there are variable terms in path analysis. Exogenous variables are variables 

that are not determined by other variables in the model while endogenous variables are variables 

that are partly determined by other variables in the model. 

2.1. Types of Effect on Path Analysis 

According [9], there are three types of effect on path analysis. The three types of effect on 

path analysis are illustrated with the following path diagrams. 

1. Direct Effect 

Direct effects refer to the direct impact of exogenous variables on endogenous variables 

without intermediaries of other variables. Here is the path diagram illustrating direct effects. 

X Y1

βXY1

 
Figure 2.1.  Direct Effect 

From Figure 2.1., it can be seen that the direct effect of exogenous variables on endogenous 

variables  is 
1XY . 

2. Indirect Effect 

Indirect effects refer to the impact of exogenous variables on endogenous variables that 

occurs through the intermediaries of other variables. 

X Y1

βXY1

Y2

βXY2

 
Figure 2.2.  Indirect Effect 

Based on Figure 2.2., variable X affects variable Y2 through the intermediary of variable Y1. 

The effect of variable X on variable Y2 can not be measured directly but rather by multiplying the 
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direct effect of variable X on Variable Y1 with the direct effect of variable Y1 on Y2. 

Mathematically, the indirect effect of Variable X on Y2 is 
1 1 2 2XY Y Y XY    . 

3. Total Effect 

The total effect is the total of all effects found in path analysis. The total effect can be 

measured by adding up all the direct and indirect effects. 

 

 

2.2. Path Diagram 

Path diagram is a diagram used to illustrate the relationships between variables in path 

analysis. According to [2], path diagrams are useful for displaying patterns of causal relationships 

between variables graphically. In the path diagram, arrows between variables indicate causal 

directions, and the values written on the arrows represent effects in the form of regression 

coefficients. Here are some simple to more complex forms of path diagram according to [7]. 

(a) 
X Y3

   (b) 
X Y3

Y1

 

(c)

X

Y1

Y2

Y3

 
 

Figure 2.3. (a), (b), (c)  Path Diagram 

Based on Figure 2.3. (c.), it can be seen that path diagrams illustrate the causal relationships 

of the four variables. Variable X is an endogenous variable while Variable Y1, Y2, and Y3 are 

endogenous variables. Variable Y3 is a pure endogenous variable while Variable Y1 and Y2 are 

intervening endogenous variables. 

 

2.3. Path Analysis Model 

The path analysis in this research is following the path diagram as shown in Figure 2.3. (c). 

The path analysis model formed according to the diagram can be written as follows. 

1 11i XY i Y iY X         (2.1) 

2 1 2 22 1i XY i YY i Y iY X Y         (2.2) 

3 1 3 2 3 33 1 2i XY i YY i Y Y i Y iY X Y Y          (2.3) 

In Equation (2.1) to 2.3, i = 1, 2, ..., n, and n is the number of observations. In path analysis, 

the variables to be used are standardized first. The purpose of standardization is to equalize the 

averages and variances so that the path coefficient can be compared with other path coefficients 

[11]. Data standardization is done by standardizing the average to 0 and the variance to 1 with the 

following formula [6]. 
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i

i
X

X X
Z

S


       (2.4) 

Description: 

iXZ
: The value of variable X on i- standardized observation  

iX
 : The value of i-observation 

X  : Average value 

S   : Standard deviation 

After standardization, the form of path equation can be written as follows. 

11

2 1 2

3 1 3 2 3

1

2 1 2

3 1 2 3

X Y i Y i

X Y i Y Y

X Y i Y Y Y Y

Y i Z Z X Z

Y i Z Z X Z Z Y i Y i

Y i Z Z X Z Z Y i Z Z Y i Y i

Z Z

Z Z Z

Z Z Z Z

 

  

   

 

  

   

     (2.5) 

In the form of a matrix, Equation (2.5) can be written like Equation (2.6). 
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  (2.6) 

The above matrix form can be written into the following equation. 

YZ   XZ      (2.7) 

In the standardization process, the coefficient   is equivalent to the correlation coefficient. 

Furthermore, estimation of path coefficients can be done based on path analysis model. 

 

2.4. Path Coefficient Estimation 

Estimation is done to obtain the path coefficient on the model. Path coefficients show the 

extent of influence between variables. One estimation of path analysis parameters is the Ordinary 

Least Square (OLS) method. The OLS method can only be used if linearity assumptions are met. 

Parameter estimation using the OLS method is done by minimizing the number of remaining 

squares. 

Y   X      (2.8) 

From equation (2.8) we have: 

Y  X      (2.9) 
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Furthermore, the remaining square can be written intoQ   . Thus, the OLS method 

minimizes the number of remaining squares as follows. 

Q    

       Y Y 


  X X  

      Y Y     X X  

    Y Y Y Y           X X X X  

     2Y Y Y        X X X  

The equation of remaining squares above is derived to   and equates to zero as follows. 

 

 
0

Q







 

2 2 0Y    X X X  

0Y    X X X  

Y X X X  

  1 Y    X X X          (2.10) 

 

2.5. Path Analysis Asumption 

According to [4] and [10], assumptions underlying path analysis are as follows: 

1. Linearity Assumptions 

The path analysis model assumes that the relationship between variables is linear. According 

to [4],  linearity assumptions can be tested using the Ramsey’s Regression Specification 

Error (RESET) test. Here are the steps for Ramsey’s RESET. 

a. For example, the first equation is a linear r ssion model 0 1i i iY x     . Then,  

parameter estimation from the equation is conducted.  After that, the determination 

coefficient is calculated with the following formula (2.10). 

 

 

2

2 1
1

1

1

n

i i

i

n

i

i

Y Y

R

Y Y







 






    (2.10) 

b. For example, the second equation is a quadratic model, 2

0 1 2i i i iY x Y       . 

Similar to the previous stage, parameter estimation is then also made in a quadratic 

model. Moreover, the determination coefficient is calculated with the following formula 

(2.11). 
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 

 

2

2 1
2

1

1

n

i i

i

n

i

i

Y Y

R

Y Y







 






    (2.11) 

c. Hypothesis testing for Ramsey’s RESET test is conducted with test statistics following F 

distribution. 

0 2

1 2

: 0

: 0

H

H








 

Test Statistics: 

 
      

2 2

2 1

1, 22

2

2

1 2
k n k

R R
F F

R n k
  




  
   (2.12) 

2. The pattern of relationships between variables is recursive. It means that there is only a one-

way causal relationship in the model, or in other words, there are no endogenous variables 

that have a reciprocal effect. Endogenous variables in path analysis are at least measured 

using interval scales. 
 

2.5. Central Limit Theorem 

The central limit theorem has an important role in the sampling distribution. One of its roles 

is to estimate the parameters of the average and variance of a population. According to 

Mandenhall (1981), supposing that Y1, Y2,…, Yn are free and spread randomly and identically with 

( )iE Y  , 2( )iV Y   and, then the distribution function of nU  will converge to a standard 

normal distribution where n approaches infinity. nU  can be defined as the following equation. 

n

Y
U n





 
  

 
     (2.13) 

The function of the random variable nU  with Equation (2.14) can be approximated by the 

following equation. 

2 /2(a U )
2

b

u

n

a

a
P b e du



 
    

 
    (2.14) 

If nU  (n-sized random variable) with n > 30, it can be approximated by the standard normal 

distribution. 

 

2.6. Resampling  

Resampling is the process of drawing repeated samples from existing or original samples so 

that a new sample is obtained. The new sample is obtained from original sized samples taken at 

random either with or without returns. The re-sampling method can be applied as an alternative if 

the number of observations does not meet the research need which can cause the parameter 

estimation incorrect. Besides, the implementation of the resampling method allows the validity of 

data that is free from assumptions or, in other words, does not need the normality assumption 

[11]. 
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2.6.1. Bootstrap 

Bootstrap was first introduced by Efron in 1979. Bootstrap is a resampling method for 

estimating the parameters of each sample of bootstrap B  which is n-sized random samples and 

taken with returns. Resampling is done for B  times in which the number of B required is large 

enough so that the estimated parameters obtained is convergent. Supposing F  of an empirical 

distribution with selected observation opportunities becomes a bootstrap sample of 1/ n   for each 

value of observation ix , then 1,2,...,i n . 

[3] defined bootstrap samples as n-sized random samples taken from F .  Bootstrap 

samples can be written as  1 2* *, *,..., *nx x x x  or can be written as Equation (2.15) below. 

1 2* ( *, *,..., *)nF x x x x     (2.15) 

Star notation indicates that *x  is the result of a random process or resampling from a set of 

original data. Meanwhile, 1 2*, *,..., *nx x x  are observations in the bootstrap samples obtained 

randomly with the return of the original data set 1 2, ,..., nx x x . 

From equation (2.15), 1 2*, *, , *nx x x are paired data selected to be bootstrap samples. 

Based on the explanation above, the bootstrap resampling process, in general, can be depicted as 

follows Figure 2.4. 

Population (N) Sample (n)

Bootsrap sample to-1 

Bootsrap sample to-2 

Bootsrap sample to-i 

 
Figure 2.4. Bootstrap Resampling Process 

The steps of the bootstrap method for estimating standard errors are as follows [3]. 

1. Determining the number of B  as the size of resampling to obtain bootstrap samples
1 2* , * , , *B

x x x  from random sampling with a return of  n  elements from .the original data 

sample. 

2. Calculating bootstrap replication for each bootstrap sample. The function applied in each 

bootstrap sample function is the same as the one in the original sample. If the parameter 

estimation in the original sample is done with OLS, the parameter estimation in the bootstrap 

sample will also be conducted with OLS 

   * *bb s  x , where 1,2,...,b B  

 *bs x  is the result of the application of the same function in  the original data sample set 

and the bootstrap data sample set.  
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3. Estimating standard errors by using standard deviations for bootstraps replicated as many as 

B times. 

   

 
1

* * .

1

B

b
B

b

se
B

 


  





   (2.16) 

where: 

 
 

1

*
* .

B

b

b

B






     (2.17) 

Description: 

Bse   : bootstrap standard error 

 * b  : parameter estimator on the b-bootstrap process 

 * .  : average parameter estimator of the bootstrap process 

B  : the size of resampling 

 

2.6.2. Jackknife 

Jackknife is a resampling method introduced by Quenouille in 1949 for estimation of bias. 

Then, in 1958, Tukey introduced jackknife to estimate standard deviations. The principle of the 

jackknife method is to eliminate five observations from n-sized samples and take other 

observations without returns. In the next stage, the deleted sample is returned and so are the other 

five observations until all observations from the population have a chance to be deleted. Based on 

the process, the Jackknife resampling process generally can be seen as shown in the following 

Figure 2.5. 

 
Figure 2.5. Jackknife Resampling Process 

Based on the process, it is obtained that the n d - sized sample where n is the initial sample 

and d is the number of observations deleted in the Jackknife sampling process. Therefore, the 
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number of Jackknife samples that may be formed is 
n

d

 
 
 

 samples. The steps for the Jacknife 

resampling method are explained as follows. 

1. Conducting resampling by removing five observation lines alternately from the original 

sample set on each Jacknife sample. 

2. Calculating the replication of i-Jackknife from  . 

 ( ) ( )i is x   

3. Calculating the standard error for the Jacknife sample. 

 
2

( ) (.)

1

n

jk i

i

n
se

n
d

d

 


 
 
 
 

     (2.18) 

Description: 

jkse
 : Jackknife standard error 

( )i
 : Parameter estimator on the i-Jackknife process 

(.)
 : Average parameter estimator on the i-Jackknife process 

 

 

2.7. Relative Efficiency 

Comparison of the resampling methods is measured based on the relative efficiency value. 

According to [13], relative efficiency is calculated by comparing the variance between the two-

parameter estimators. The relative efficiency of the two estimators can be written as follows. 

 
 
 

,
BS

JK BS

JK

V
eff

V


 


     (2.19) 

Description: 

( , )BS JKeff    : efficiency between bootstrap resampling method estimators and jackknife 

resampling method estimators 

 JKV   : variance of parameter estimators by the jackknife resampling method   

 BSV   : variance of parameter estimators by the bootstrap resampling method 

Comparison of efficiency between Bootstrap and Jacknife resampling estimator variance. The 

variance of parameter estimators with Jacknife resampling method. If the calculated efficiency 

result using Equation (2.19) is more than 1, Estimator JK  is said more efficient than Estimator

BS . Conversely, if the calculated efficiency result is less than 1, Estimator BS  is said more 
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efficient  than Estimator JK . Meanwhile, if the calculate efficiency result is equal to 1, both 

estimators are equally efficient. 

 

3.  METHODOLOGY  

The data used in this research are simulation study data with one exogenous variable, two 

intervening endogenous variables, and one pure endogenous variable. The exogenous variable 

was raised and standardized while the endogenous variables were determined based on the values 

of exogenous variables, path coefficients, and residuals generated following the Weibull 

distribution. The path coefficients in this research were raised at several levels of closeness with a 

value range of 0,05 | | 0,15  representing a low closeness of relationships, a value range of 

0,20 | | 0,40  representing a medium closeness of relationships, a value range of 

0,50 | | 0,90  representing a high closeness of relationships, and 0,05 | | 0,90  representing 

the three levels of closeness. 

 

4. RESULT AND DISCUSSION 
The relative efficiency results for the low level of closeness can be seen in Table 4.1. 

Table 4.1. Relative Efficiency of Parameter Estimators at Low Level of Closeness 

Path 

Coefficients 

Ragam 

Bootstrap 

Ragam 

Jackknife 

Relative 

Efficiency 

βXY1 0.00007 0.00002 3.73064 

βXY2 0.00017 0.00004 3.65072 

βY1Y2 0.01402 0.00395 3.62942 

ΒXY3 0.00044 0.00012 3.70288 

βY1Y3 0.03725 0.01065 3.70772 

βY2Y3 0.03932 0.01139 3.71637 

 

From Table 4.1., it can be seen that the relative efficiency values of all path analysis 

coefficients were > 1, indicating that the Jackknife method had a smaller variance than the 

Bootstrap method. Therefore, it can be concluded that path analysis with the Jacknife resampling 

method is three times more efficient than that with the bootstrap resampling method. 

The relative efficiency results for the medium level of closeness can be seen in Table 4.2. 

Table 4.2. Relative Efficiency of Parameter Estimators at Medium Level of Closeness 

Path 

Coefficients 

Ragam 

Bootstrap 

Ragam 

Jackknife 

Relative 

Efficiency 

βXY1 0.00007 0.00002 3.7306 

βXY2 0.00128 0.00036 3.6299 

βY1Y2 0.01402 0.00395 3.6294 

ΒXY3 0.00360 0.00100 3.7194 

βY1Y3 0.03586 0.01018 3.7215 

βY2Y3 0.03932 001139 3.7163 



363 

Adji Achmad Rinaldo Fernandes 

 

From Table 4.2., it can be seen that the relative efficiency values of all path analysis 

coefficients were > 1, indicating that the Jackknife method had a smaller variance than the 

bootstrap method. Therefore, it can be concluded that path analysis with the Bootstrap resampling 

method. 
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The relative efficiency results for the high level of closeness can be seen in Table 4.3. 

Table 4.3. Relative Efficiency of Parameter Estimators at High Level of Closeness 

Path 

Coefficients 

Ragam 

Bootstrap 

Ragam 

Jackknife 

Relative 

Efficiency 

βXY1 0.00007 0.00019 3.73064 

βXY2 0.00683 0.00192 3.62889 

βY1Y2 0.01402 0.00394 3.62942 

ΒXY3 0.01937 0.00536 3.72607 

βY1Y3 0.04226 0.01193 3.72165 

βY2Y3 0.03932 0.01139 3.71637 
From Table 4.3., it can be seen that the relative efficiency values of all path analysis 

coefficients were > 1, indicating that the Jackknife method had a smaller variance than the 

Bootstrap method. Therefore, it can be concluded that path analysis with the Jacknife resampling 

method is three times more efficient than that with the bootstrap resampling method. 

The relative efficiency results for the low-to-high level of closeness can be seen in Table 4.4. 

Table 4.4. Relative Efficiency of Parameter Estimators at Low to High Level of Closeness 

Path 

Coefficients 

Ragam 

Bootstrap 

Ragam 

Jackknife 

Relative 

Efficiency 

βXY1 0.00007 0.00002 3.7306 

βXY2 0.00128 0.00036 3.6229 

βY1Y2 0.01402 0.00394 3.6294 

ΒXY3 0.00360 0.00100 3.7267 

βY1Y3 0.03868 0.01018 3.7039 
From Table 4.4., it can be seen that the relative efficiency values of all path analysis 

coefficients were > 1, indicating that the Jackknife method had a smaller variance than the 

Bootstrap method. Therefore, it can be concluded that path analysis with the Jacknife resampling 

method is three times more efficient than that with the bootstrap resampling method. In contrast 

to [8] study, the Jacknife resampling in this research was done by removing one observation only 

so that the resulting Jacknife samples were less than the bootstrap samples. This caused Bootstrap 

resampling to be better than Jacknife resampling. 

 

5. CONCLUSION  
Based on the simulation study that has been done, the use of Bootstrap and Jackknife 

resampling methods on data with normality assumption is not fulfilled, indicating that both 

bootstrap and jackknife resampling methods can be applied and able to overcome normality 

assumption. The calculated relative efficiency results in various closeness levels of relationship 

show that the Jacknife resampling method (delete-5) is three times more efficient than the 

Bootstrap resampling method. 
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