TY - JOUR
AU - Fachrunnisa, St. Munieroh
AU - Hasmawati, Hasmawati
AU - Amir, Amir Kamal
PY - 2023/01/05
Y2 - 2024/05/27
TI - Metric Dimension of Shackle Operation C_3 Cycle Graph
JF - Jurnal Matematika, Statistika dan Komputasi
JA - J
VL - 19
IS - 2
SE -
DO - 10.20956/j.v19i2.22957
UR - https://journal.unhas.ac.id/index.php/jmsk/article/view/22957
SP - 317-322
AB - <p>Let <em>G</em> be a connected graph and <em>W</em> be a ordered vertices subset on a connected graph . The set <em>W</em> is called resolving set for <em>G</em> if every vertex on graph <em>G</em> has distinct representation of <em>W</em>. A resolving set containing a minimum number of vertices is called resolving set minimum or basis for <em>G</em> and the cardinality of resolving set is the metric dimension on graph <em>G</em>, denoted by <em>dim(G)</em>. In the thesis discusses about metric dimensions of shackle operation <em>C<sub>3</sub></em> cycle graph, <em>dim(Shack(C<sub>3</sub><sup>1</sup>,C<sub>3</sub><sup>2</sup>,…,C<sub>3</sub><sup>k</sup>:v<sub>3</sub><sup>1</sup>=v<sub>1</sub><sup>2</sup>,v<sub>3</sub><sup>2</sup>=v<sub>1</sub><sup>3</sup>,…,v<sub>3</sub><sup>k-1</sup>=v<sub>1</sub><sup>k</sup> ))=2</em> for <em>k>=2</em> . To proof this results, we was used mathematical induction method.</p>
ER -