Perbandingan dua metode analisis konsentrasi mikroplastik pada kerang hijau, Perna viridis dan penerapannya dalam kajian ekotoksikologi (Comparison of two methods of analyzing microplastic concentrations of green mussels, Perna viridis, and their application in ecotoxicological studies)

Authors

  • Liestiaty Fachruddin Program Studi Manajemen Sumber Daya Perairan Departemen Perikanan Fakultas Ilmu Kelautan dan Perikanan Universitas Hasanuddin Makassar
  • Khusnul Yaqin Program Studi Manajemen Sumber Daya Perairan Departemen Perikanan Fakultas Ilmu Kelautan dan Perikanan Universitas Hasanuddin Makassar
  • Reski Iin Program Studi Manajemen Sumber Daya Perairan Departemen Perikanan Fakultas Ilmu Kelautan dan Perikanan Universitas Hasanuddin Makassar

Abstract

Microplastic has become a pollution problem that has received serious attention from people to scientists. There are several microplastic analysis methods in mussel tissue. This study examines two analytical methods, namely non-filtration and filtration methods. 99 samples of green mussels, Perna viridis, were collected by hand from the waters of Lae-Lae Island in Makassar. For the purposes of the study, green mussels are grouped in various ranges of shell lengths that are 4-5.9 cm (small); 6-7.9 cm (medium) and 8-10 cm (large).  T-student test was used to determine the difference in the average concentration of microplastic in the mussel with two different techniques used.  The ANOVA parametric test was used to calculate the difference in the average microplastic concentration between different lengths of shell lengths. The results showed that the concentration of microplastics found in the tissue of the green mussel is in the form of fiber. From the results of statistical analysis it was found that microplastic analysis techniques with filtration were able to obtain more microplastic concentrations compared to non-filtration techniques. The results of this study also showed that the longer the size of the shell the less the concentration of microplastic shells. Therefore it was concluded that the larger the size of the green mussel the less the concentration of microplastic in the tissue.

References

Amiard-Triquet, C. , Berthet, B. , Metayer, C. & Amiard, J.C. 1986. Contribution to the ecotoxicological study of cadmium, copper and zinc in the mussel Mytilus edulis. Marine Biology. 92(1):7–13.

Baechler, B.R. , Stienbarger, C.D. , Horn, D.A. , Joseph, J. , Taylor, A.R. , Granek, E.F. & Brander, S.M. 2020. Microplastic occurrence and effects in commercially harvested North American finfish and shellfish: Current knowledge and future directions. Limnology and Oceanography Letters. 5(1):113–136.

Bellas, J. & Gil, I. 2020. Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa. Environmental Pollution. :114059.

Boyden, C.R. 1974. Trace element content and body size in molluscs. Nature. 251(5473):311–314.

Bråte, I.L.N. , Hurley, R. , Iversen, K. , Beyer, J. , Thomas, K. V , Steindal, C.C. , Green, N.W. , Olsen, M. & Lusher, A. 2018. Mytilus spp. as sentinels for monitoring microplastic pollution in Norwegian coastal waters: A qualitative and quantitative study. Environmental Pollution. 243:383–393.

Chatterji, A. , Ansari, Z.A. , Ingole, B.S. & Parulekar, A.H. 1984. Growth of the green mussel, Perna viridis L., in a sea water circulating system. Aquaculture. 40(1):47–55.

Cossa, D. , Bourget, E. , Pouliot, D. , Piuze, J. & Chanut, J.P. 1980. Geographical and seasonal variations in the relationship between trace metal content and body weight in Mytilus edulis. Marine Biology. 58(1):7–14.

Da Mota, A.H.S.N .2017. The potential of microplastic pellets as a vector to metal contamination in two sympatric marine species. Ph D disertation. Universidade Nova De Lisboa. 38 p.

Duinker, A. , Bergslien, M. , Strand, Ø. , Olseng, C.D. & Svardal, A. 2007. The effect of size and age on depuration rates of diarrhetic shellfish toxins (DST) in mussels (Mytilus edulis L.). Harmful Algae. 6(2):288–300.

Eriksen, M. , Lebreton, L.C.M. , Carson, H.S. , Thiel, M. , Moore, C.J. , Borerro, J.C. , Galgani, F. , Ryan, P.G. & Reisser, J. 2014. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE. 9(12):1–15.

Firdaus, M. , Trihadiningrum, Y. & Lestari, P. 2020. Microplastic pollution in the sediment of Jagir Estuary, Surabaya City, Indonesia. Marine Pollution Bulletin. 150:110790.

Gambardella, C. , Morgana, S. , Bramini, M. , Rotini, A. , Manfra, L. , Migliore, L. , Piazza, V. , Garaventa, F. & Faimali, M. 2018. Ecotoxicological effects of polystyrene microbeads in a battery of marine organisms belonging to different trophic levels. Marine environmental research. 141:313–321.

GESAMP, 2015.Sources, fate and effects of microplastics in the marine environment: a global assessment. In: Kershaw, P.J. (Ed.), (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection). Rep. Stud. GESAMP No. 90 (96 pp.)

Gilek, M. , Björk, M. & Näf, C. 1996. Influence of body size on the uptake, depuration, and bioaccumulation of polychlorinated biphenyl congeners by Baltic Sea blue mussels, Mytilus edulis. Marine Biology. 125(3):499–510.

Guo, Y. , Ma, W. , Li, J. , Liu, W. , Qi, P. , Ye, Y. , Guo, B. , Zhang, J. & Qu, C. 2020. Effects of microplastics on growth, phenanthrene stress, and lipid accumulation in a diatom, Phaeodactylum tricornutum. Environmental Pollution. 257:113628.

Horn, D.A. , Granek, E.F. & Steele, C.L. 2020. Effects of environmentally relevant concentrations of microplastic fibers on Pacific mole crab (Emerita analoga) mortality and reproduction. Limnology and Oceanography Letters. 5(1):74–83.

Jambeck, J.R. , Geyer, R. , Wilcox, C. , Siegler, T.R. , Perryman, M. , Andrady, A. , Narayan, R. & Law, K.L. 2015. Plastic waste inputs from land into the ocean. Science. 347(6223):768–771.

Ke, C. , Yu, K.N. , Lam, P.K.S. & Wang, W.-X. 2000. Uptake and depuration of cesium in the green mussel Perna viridis. Marine Biology. 137(4):567–575.

Kementerian Perindustrian Republik Indonesia. 2016. Industri Plastik dan Karet Hilir Prospektif di Indonesia.https://kemenperin.go.id/artikel/16079/Industri-Plastik-dan-Karet-Hilir-Prospektif-di-Indonesia. Dikases pada tanggal 8 Maret 2020.

Lu, K. , Qiao, R. , An, H. & Zhang, Y. 2018. Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere. 202:514–520.

Maha, R.R.B. .2019. Microplastic contamination in green mussel aquaculture at Straits of Johor. Master thesis. Universiti Teknologi Malaysia. 63 p.

Martinčić, D. , Kwokal, Ž. , Peharec, Ž. , Marguš, D. & Branica, M. 1992. Distribution of Zn, Pb, Cd and Cu between seawater and transplanted mussels (Mytilus galloprovincialis). Science of the total environment. 119:211–230.

Martinelli, J.C. , Phan, S. , Luscombe, C.K. & Padilla-Gamiño, J.L. 2020. Low incidence of microplastic contaminants in Pacific oysters (Crassostrea gigas Thunberg) from the Salish Sea, USA. The Science of the total environment. 715:136826.

Pannetier, P. , Morin, B. , Le Bihanic, F. , Dubreil, L. , Clérandeau, C. , Chouvellon, F. , Van Arkel, K. , Danion, M. & Cachot, J. 2020. Environmental samples of microplastics induce significant toxic effects in fish larvae. Environment international. 134:105047.

Plastics Europe, 2018. Plastics - The Facts: An Analysis of European Plastics Production, Demand and Waste Data. Association of Plastic Manufacturers, Brussels.

Qu, X. , Su, L. , Li, H. , Liang, M. & Shi, H. 2018. Assessing the relationship between the abundance and properties of microplastics in water and in mussels. Science of the total environment. 621:679–686.

Rahim, N.F. , Yaqin, K. & Rukminasari, N. 2020. Effect of microplastic on green mussel Perna viridis: experimental approach. Jurnal Ilmu Kelautan Spermonde. 5(2):89–94.

Savinelli, B. , Fernández, T.V. , Galasso, N.M. , D’Anna, G. , Pipitone, C. , Prada, F. , Zenone, A. , Badalamenti, F. & Musco, L. 2020. Microplastics impair the feeding performance of a Mediterranean habitat-forming coral. Marine Environmental Research. :104887.

Silva, M.S.S. , Oliveira, M. , Lopéz, D. , Martins, M. , Figueira, E. & Pires, A. 2020. Do nanoplastics impact the ability of the polychaeta Hediste diversicolor to regenerate? Ecological Indicators. 110:105921.

Statista, 2019. Global Plastic Production. https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/. Dikases pada tanggal 08 Maret 2020.

Tantanasarit, C. , Babel, S. , Englande, A.J. & Meksumpun, S. 2013. Influence of size and density on filtration rate modeling and nutrient uptake by green mussel (Perna viridis). Marine Pollution Bulletin. 68(1–2):38–45.

Webb, S. , Ruffell, H. , Marsden, I. , Pantos, O. & Gaw, S. 2019. Microplastics in the New Zealand green lipped mussel Perna canaliculus. Marine Pollution Bulletin. 149:110641.

Woods, M.N. , Stack, M.E. , Fields, D.M. , Shaw, S.D. & Matrai, P.A. 2018. Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis). Marine pollution bulletin. 137:638–645.

Xue, B. , Zhang, L. , Li, R. , Wang, Y. , Guo, J. , Yu, K. & Wang, S. 2020. Underestimated Microplastic Pollution Derived from Fishery Activities and “Hidden” in Deep Sediment. Environmental Science & Technology.

Yaqin, K. 2019. Petunjuk praktis aplikasi biomarker sederhana. First edition. UPT, Unhas Press., Makassar. 54 p.

Yaqin, K. , Fachruddin, L. & Rahim, N.. 2015. Studi kandungan logam timbal (pb) kerang hijau, Perna viridis terhadap indeks kondisinya. Jurnal Lingkungan Indonesia. 3:309–317.

Zhang, W. , Zhang, S. , Wang, J. , Wang, Y. , Mu, J. , Wang, P. , Lin, X. & Ma, D. 2017. Microplastic pollution in the surface waters of the Bohai Sea, China. Environmental Pollution. 231:541–548.

Downloads

Published

2020-03-20

Issue

Section

Articles