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Abstract 

 

Antioxidants and free radicals have long been known to be the main factors in the occurrence of 

degenerative diseases. Various studies related to antioxidants and free radicals which have implications 

for oxidative stress have increased in the last decade. Knowledge of stress oxidative physiology in various 

animals help in understanding the pathophysiology of diseases associated with oxidative stress. Bats are 

claimed to be the best known animals in term of survival compared to other mammals. Bats are reported 

to produce low reactive oxygen species (ROS) but high endogenous antioxidants that can prevent 

oxidative stress. Bats high defense against oxidative stress has implications for their extreme longevity, 

the role as a reservoir of viruses, and the potential as experimental animals. 
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Introduction 

 

Oxidative stress has been a scourge for the health world for more than three decades (Sies, 

2015). Research on oxidative stress status related to disease pathogenesis is increasing every 

year. The knowledge of the oxidative stress process in the species other than human is very 

important in order to understand the process of oxidative stress associated with the homeostasis 

process. Bats are the most successful mammals regarding survival and have an outstanding 

defense mechanism against oxidative stress (Brunet-Rossinni & Austad, 2004; Hanadhita, 

Rahma, Prawira, Sismin Satyaningtijas, & Agungpriyono, 2018; Wang, Walker, & Poon, 2011; 

Wilhelm Filho, Althoff, Dafré, & Boveris, 2007). Bats are scattered all over the world with 

various latitude, climates, and habitats. There are 1240 species of bats in the world that 

represent more than 20% of mammal species (Calisher, Childs, Field, Holmes, & Schountz, 

2006; Wang et al., 2011). Bats (Chiropteran order) is traditionally divided into two suborders 

based on their morphology, Megachiroptera which consists of frugivorous bats and distributed 

only in the old world, and Microchiroptera which includes of other bats and can be found both 

in the old world and new world (Simmons, 2000). Megachiropteran or megabats have a large 

body size (20-1500 grams), while Microchiroptera or microbats usually small-sized (1.5-150 

grams) (Altringham, 2011). Classification of the taxonomy of bats based solely on morphology 

is no longer relevant, nowadays the order of Chiroptera consists of two suborders 

Yinpterochiroptera and Yangochiroptera (M. Lei & Dong, 2016; Teeling et al., 2005). 
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Yinpterochiroptera unites Pteropodidae families that do not have echolocation ability with the 

Rhinolophoidea family that has excellent echolocation abilities (M. Lei & Dong, 2016). 

 

Bats, as the only flying mammal, experience a daily metabolic surge of up to 10-17 times (O’Shea 

et al., 2014). As stated in the free radical theory of aging, high metabolic rate will induce high 

free radicals production. High amounts of free radicals that are not balanced by antioxidants 

neutralization can cause damage to several cells components such as lipids, proteins, and DNA 

and often lead to cancer and degenerative diseases (Buffenstein, Edrey, Yang, & Mele, 2008; 

Harman, 2006). However, bats have a unique mechanism for preventing oxidative stress. This 

paper will discuss the uniqueness of oxidative stress defenses in bats and their implications for 

their life history.  

 

Oxidative Stress Defense of Bats 

 

Bats have flying behavior to forage and roaming around the area from dusk to night (Basri et 

al., 2017; Hengjan et al., 2018). Bats have an extensive home range and can fly relatively far,  

up to hundreds of kilometers in one time (Breed, Field, Smith, Edmonston, & Meers, 2010; 

Hengjan et al., 2018; Norquay, Martinez-Nunez, Dubois, Monson, & Willis, 2013; Roberts, 

Catterall, Eby, & Kanowski, 2012). Large bat species such as the flying foxes can even travel 

between continents (Breed et al., 2010). Their flying behavior makes bats have experience with 

high metabolic spikes than same-sized terrestrial mammals (O’Shea et al., 2014). 

 

In bats metabolism, energy production in the form of adenine triphosphate (ATP) also produces 

by-products in the form of reactive oxygen species (ROS) (Figure 1). Increased metabolic rate 

will have a direct impact on increasing ROS production. A radical form of ROS can cause 

damage to cellular components related to the aging process, degenerative diseases, and even 

cancer formation (Birben, Sahiner, Sackesen, Erzurum, & Kalayci, 2012; Buffenstein et al., 2008). 

Intracellular ROS is mainly produced by electron transport metabolism in the inner membrane 

of mitochondria. Besides, intracellular ROS comes from the metabolic processes of long fatty 

acids and proteins in peroxisomes and endoplasmic reticulum (ER), as well as other enzymes 

such as NADPH oxidase, xanthine oxidase, nitric oxide synthase, cyclooxygenase, cytochrome 

P450 enzymes, and lipoxygenase (Holmström & Finkel, 2014). 

 

Despite high metabolism, bats are reported to have minimal adverse effects due to oxidative 

stress (Brunet-Rossinni, 2004; Brunet-Rossinni & Austad, 2004; Podlutsky, Khritankov, 

Ovodov, & Austad, 2005; Ungvari et al., 2008). Oxidative stress is a condition of imbalance 

between ROS and antioxidants which can be caused by a lack of antioxidants or too high ROS 

production (Birben et al., 2012). MDA is one of the metabolic products of lipid peroxidation 

by ROS (Figure 1). MDA is often used as a biological marker of stress oxidative (Grotto et al., 

2009; Ho, Karimi Galougahi, Liu, Bhindi, & Figtree, 2013; Kwiecien et al., 2014; Wresdiyati et 

al., 2007). SOD is one of the endogenous antioxidant enzymes that function as superoxide 

(O2
−
) scavenger.  

 

Superoxide is one of radical ROS formed from electron transport. SOD along with other 

antioxidant enzymes such as catalase, glutathione peroxidases, and peroxiredoxins become 

common defenses to detoxify free radicals into less radical forms (Figure 1) (Fukai & Ushio-

Fukai, 2011; X. G. Lei et al., 2016). Hanadhita et al. (2017) analyzed malonaldehyde (MDA) 

and superoxide dismutase (SOD) levels in the spleen and liver organ of the lesser short-nosed 

bat (Cynopterus brachyotis). C. brachyotis spleen was reported to have higher levels of MDA 

than liver, even though the liver is generally the largest ROS producing organ. These results are 

thought to be related to cellular activity in the spleen that might be associated with the active 

immune activity (Hanadhita, Rahma, et al., 2018). Comparison between liver and spleen levels 
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of MDA and SOD in C. brachyotis and R. norvegicus showed that C. brachyotis produced less 

MDA and SOD compared to R. norvegicus although C. brachyotis had a higher basal 

metabolism rate than R. norvegicus (Hanadhita, Rahma, Prawira, Satjaningtyas, & 

Agungpriyono, 2017). Other researchers have also reported low production of ROS by bats. 

Little Brown Bat (Myotis lucifugus) was reported produce less than half the amount of free 

radical per unit of oxygen consumed compared to the short-tailed shrew (Blarina brevicauda) 

and white-footed mice (Peromyscus leucopus) (Brunet-Rossinni, 2004). Ungvari et al. (2008) 

also stated that endothelial cells from the arteries of M. lucifugus generate fewer ROS and are 

more resistant to oxidative damage than P. leucopus cells. Study of comparison of the ROS 

releasement by the Big Brown Bat (Eptesicus fuscus), house sparrow (Passer domesticus), and 

mice (Mus musculus) also shows that E. fuscus produce the lowest ROS up to 67% below the 

mice (Brown, McClelland, Faure, Klaiman, & Staples, 2009). 

 

 

Figure 1 Production of reactive oxygen species (ROS) from cell respiration and antioxidants 

neutralization pathway. Superoxide (O2

-
) produced by mitochondrial respiration, is 

converted to hydrogen peroxide (H2O2) by superoxide dismutase (SOD). H2O2 is converted 

by catalase (CAT), glutathione peroxidase (GSH), and peroxiredoxins (Prx). H2O2 can be 

converted spontaneously to hydroxyl radical (OH
-
) when interacting with reduced transition 

metal (Cu
+ 

/ Fe
2+

). OH
- 
is very radical and can oxidize cells lipid membranes and produce 

secondary metabolites such as aldehyde and malondialdehyde (MDA) (modified from Fukai 

and Ushio-Fukai 2011; X. G. Lei et al. 2016). 

 

Besides producing low ROS, bats are reported to bring high endogenous antioxidants. Bats 

deliver endogenous antioxidants such as SOD, glutathione peroxidases, catalase, α-tocopherol, 

and β-carotene that are higher than sheep, rats, and mice (Filho, Althoff, Dafré, & Boveris, 

2007; Reinke & O’Brien, 2006). The high yield of endogenous antioxidants protects red blood 

cells from oxidative damage that might occur when flying (Reinke & O’Brien, 2006). One 

species of bat, white bat Honduran (Ectophylla alba), has a unique ability which is not found 

in other mammals. They can store carotenoid antioxidants on its skin. Therefore it appears as 

a bright yellow color (Galván et al., 2016).  

 

Low production of ROS in bats is a result of mitochondrial DNA (mtDNA) evolution that 

prevents oxidative stress. Bats mitochondrial genes that play a significant role in energy 

metabolism (e.g., cytochrome B and oxidative phosphorylation gene) experience adaptive 

evolution with a high evolutionary rate compared to other mammals. Bats also have a low 

mtDNA mutation rate which allows low ROS production (Nabholz, Glémin, & Galtier, 2008). 

The concentration of bats endogenous antioxidant was closely related to hibernation and 

feeding habits. Hibernating bats have higher antioxidants than non-hibernating bats (Yin et al., 

2016) and frugivorous bats have the highest antioxidants followed by omnivorous and 
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animalivorous species (Schneeberger, Czirják, & Voigt, 2014). Redox status balance between 

free radicals and antioxidants is essential to prevent a surge in oxidative stress levels (Birben et 

al., 2012). Low generation of free radicals and high production of antioxidants are two critical 

powers of bats in fighting against oxidative stress.  

 

Implications of Stress Oxidative Defense 

 

Extreme Longevity 

 

The dispossable soma theory at the cellular levels predicts that cellular maintenance and repair 

processes will directly impact longevity (Thomas B L Kirkwood & Austad, 2000). This factor 

can be related to the mitochondria function that produces fewer free radicals, or the body 

produces or acquires more antioxidants, which of these two factors occur in bats (Harman, 

2006; T. B.L. Kirkwood, 1989; Thomas B L Kirkwood & Austad, 2000). Bats have 3-10 times 

greater lifespan than other mammals with similar size (Tabel 1) (Ball, levari-Shariati, Cooper, & 

Aliani, 2018; Podlutsky et al., 2005; Wilkinson & South, 2002). The most extended lifespan 

reported in Myotis brandtii with recorded longevity for more than 40 years (Podlutsky et al., 

2005). Hibernation behavior that has an impact on increasing endogenous antioxidant 

production and minimal production of ROS seems to have implications for the long lifespan of 

bats (Podlutsky et al., 2005; Yin et al., 2016). However, homeothermic bats that do not have 

the habit of hibernation also have a longer life than same sized mammals (Jürgens & Prothero, 

1987; Wilkinson & South, 2002). Extreme survival compared to other mammals with the same 

body size makes bats placed above the regression line in studies that link body mass and 

durability in mammals and birds (Healy et al., 2014).  

 

Table 1  The maximum lifespan of bats 

Bats Species Maximum Lifespan (years) Reference 

Plecotus auritus
1
 > 30 Wilkinson & South, (2002) 

Myotis lucifugus
1
 > 30 Wilkinson & South, (2002) 

Rhinolopus ferrumequinum
1
 > 30 Wilkinson & South, (2002) 

Pteropus giganteus
2
 >30 Wilkinson & South, (2002) 

Myotis brandti
1
 >40 Podlutsky et al. (2005) 

1)
Heterothermic  

2)
Homeothermic 

 

Bats as Reservoir Virus 

 

Bats have been known to be a reservoir of various viruses that are harmful to humans but not 

damaging to bats (Anindita et al., 2015; Dharmayanti & Sendow, 2015; Kobayashi et al., 2015; 

Sasaki et al., 2016, 2014, 2012, Sendow et al., 2010, 2013; Wada et al., 2018). Bats have a 

unique immune component that prevents damage due to viral infections (Hanadhita, 

Satyaningtijas, & Agungpriyono, 2018; Pavlovich et al., 2018; Schountz, Baker, Butler, & 

Munster, 2017). The high production of antioxidants in bats can also support their resistance to 

viruses. Antioxidants treatment can significantly reduce replication of flavivirus in vitro studies 

(Gullberg, Steel, Moon, Soltani, & Geiss, 2015). An understanding of oxidative stress status in 

bats can help reveal the pattern of transmission of the virus from bats to other vulnerable hosts. 

Exposure to toxins, ectoparasites, weather changes, and physiological cycles can interfere with 

bat oxidative homeostasis and result in oxidative stress (Lilley et al., 2013; Oliveira et al., 2018; 

Ruiz, Eeva, Kanerva, Blomberg, & Lilley, 2019). The use of pesticides (e.g., Deltamethrin) on 

fruit plantations impacts the increase in stress oxidative markers in fruit bats (Oliveira et al., 

2018). Heavy metal contamination in bat habitat also  impact on decreasing endogenous 

antioxidants and increasing ROS in bats (Ruiz et al., 2019). Stress on bats due to the infection 

of white-nose syndrome, which is highly pathogenic to bats, can causes increased viral 

replication and viral shedding from bats (Davy et al., 2018). Environmental stressors and 
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changes in the ecological habitat of bats may have a contribution to the spread of the virus and 

the incidence of zoonotic outbreaks. 

 

The Potential Use as Animal Model 

 

The bat's barrier to oxidative damage can be used as creature models of various degenerative 

diseases, including cardiovascular degeneration (Ungvari et al., 2008). Induction of oxidative 

stressors against animal models often increases cancer risk. Wang et al. (2011) have conducted 

extensive research to identify the presence of tumors in bats on the Australia, Asia, and Africa 

continent then failed to find cancer incidence. It is suspected that the bat's mitochondrial defense 

against oxidative damage results in a decrease of cancer cells formation. E. alba, the only 

mammal that can store carotenoids, has the potential to be an animal model for the study of 

macular degeneration therapy in humans (Galván et al., 2016).  

 

Bats can be maintained in captivity despite the need for long acclimatization (Crichton & 

Krutzsch, 2000). The breeding of bats in captivity is difficult, although it is not impossible 

(Brunet-Rossinni & Austad, 2004). In vitro experiments using cell lines from bats have also been 

developed by several researchers. Crameri et al. (2009) have established a method for making 

cell lines from various bat organs Pteropus alecto which is expected to be applied to other bat 

species. Commercial bats cell line Tb 1 Lu (ATCC® CCL-88TM) has also been available and 

accessible for interested researchers. 

 

Conclusion 

 

Bats produce low free radicals but high antioxidants which allow them to be resistant to 

oxidative stress. High resistance to oxidative stress has implications for their long lifespan, role 

as reservoir virus, and potential as animal models. The mechanism of bat's resistance on 

oxidative stress is expected in understanding the pathophysiology of degenerative diseases, 

aging processes, and zoonotic diseases originating from bats. 
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