The Shear Bond and Bending Strength of Laminated Wood From Pine Wood (Pinus merkusii Jungh et de Vr.,) and Sengon Wood (Paraserianthes falcataria (L) Nielsen) Glued With Melamine Urea Formaldehyde (MUF)
Keteguhan Rekat Geser dan Keteguhan Lengkung Statis Kayu Laminasi dari Kayu Pinus (Pinus merkusii Jungh et de Vr.) dan Kayu Sengon (Paraserianthes falcataria (L) Nielsen) Berperekat Melamins Urea Formaldehida (MUF)
DOI:
https://doi.org/10.24259/perennial.v20i1.33966Keywords:
Laminated wood, Melamine formaldehide, Pine, Sengon, Variations in layersAbstract
Laminated wood's strength properties are influenced by the arrangement of each layers. This research aims to determine the effect of variations in layers of laminated wood to the shear bond strength, modulus of elasticity (MoE) and modulus of rupture (MoR) of laminated wood from Pine (P) and Sengon (S) wood using melamine urea formaldehyde adhesive (MUF). Laminated wood is tested using German standards DIN (Deutsches Intitut fur Normung), JAS 234-2007 and SNI 7973-2013. The data testing from 6 layer variation treatments were analyzed of variance in a completely randomized design (CRD) with 10 replications. The highest average value of shear bond strength for laminated wood in treatment G2 (Sengon-Sengon) was 6.17 N/mm2 which met the JAS 234-2007 standard (>5.4 N/mm2) while treatment G3 (Pine-Sengon) was 4.04 N/mm2 and G1 (Pine-Pine) of 2.78 N/mm2 cannot meet the standard. The highest average MoE was at A5 (P-S-S-P-P) at 8584.27 N/mm2 and the lowest at A3 (P-S-P) at 6210.99 N/mm2 included quality codes E8 and E6 in the SNI 7973-2013 Standard. The highest average MoR was at A4 (P-S-S-S-P) at 73.23 N/mm2 and the lowest at A5 (P-S-S-P-P) at 61.98 N/mm2, all treatments included quality code E25 (>25 N/mm2) and could meet JAS 234-2007 Standards (>36.0 N/mm2). The laminated wood in this study based on MoR is included to the strength class III – II and located between the strength class of Pine wood (strength class II) and Sengon wood (strength class III).
References
APA. (2017). X440E - Glulam Product Guide. The Engineered Wood Association, Form No.X440E.
Apriliani, D., Fiesnanda, A., Putra, B., & Rahayu, W. W. (2021). Identifikasi Dan Inventarisasi Jenis Pohon Komersial Sebagai Investasi Jangka Panjang. February.
BSN. (2013). SNI 7973-2013 Spesifikasi Desain untuk Konstruksi Kayu. Badan Standardisasi Nasional.
Burhanuddin, V., Ulfah, D., & Emelya, R. (2016). Sifat Fisika dan Nilai Keteguhan Rekat Kayu Kecapi (Sandoricum koetjape Merr). Jurnal Hutan Tropis, 4(2), 145–153.
JAS. (2007). Japanese Agricultural Standard for Glued Laminated Timber. Japanese Agricultural Standard (JAS 234), 1152, 1–45.
Karlinasari, L., Nawawi, D., & Widyani, M. (2010). Kajian Sifat Anatomi dan Kimia Kayu Kaitannya dengan Sifat Akustik Kayu. Jurnal Ilmu-Ilmu Hayati Dan Fisik, 12(3), 110–116.
Kasmudjo. (2019). Peluang kayu mindi, pinus dan trembesi sebagai bahan mebel dan kerajinan. 182–192.
Kementerian LHK. (2020). Vademecum Kehutanan Indonesia 2020. Kementerian Lingkungan Hidup dan Kehutanan.
Mirza, H., Mahdie, M. F., Rahmat, G. A., Program, T., & Kehutanan, S. (2020). Sifat Fisik dan Mekanik Papan Partikel dari Serbuk Gergajian Kayu Sengon Laut (Paraserianthes falcataria) menggunakan Perekat PVAC Physical and Mechanical Properties of Particle Board of Sea Sengon (Paraserianthes falcataria) Wood Sawdust Using PVAC Adhes. Jurnal Sylva Scienteae, 03(5), 855–867.
Nurrachmania, M., & Sidabukke, S. (2020). Kualitas Laminasi Kayu Akasia (Accacia mangium) Menggunakan Perekat Isosianat. Menara Ilmu, 14(2), 57–67.
Pari, G., Roliadi, H., Setiawan, D., & Saepuloh, S. (2006). Komponen Kimia Sepuluh Jenis Kayu Tanaman Dari Jawa Barat. Jurnal Penelitian Hasil Hutan, 24(2), 89–101. https://doi.org/10.20886/jphh.2006.24.2.89-101
PIKA. (2003). Mengenal Sifat-Sifat Kayu Di Indonesia dan Penggunaannya (Cetakan ke). Penerbit Kanisius Yogyakarta.
Purwaningrum, T., Hamidah, S., & Yuniarti. (2019). Pengaruh Jumlah Lapisan Terhadap Sifat Fisika Mekanika Balok Laminasi Kayu Galam (Melaleuca cajuputi). Jurnal Sylva Scienteae, 2(1), 155–163.
Risnasari, I., Azhar, I., & Sitompul, A. (2012). Karakteristik Balok Laminasi Dari Batang Kelapa (Cocos Nucifera L.) Dan Kayu Kemiri (Aleurites Moluccana Wild.) (Characteristics of Glued Laminated Beams of Coconut Trunk (Cocos Nucifera L.) and Candlenut Wood (Aleurites Moluccana Wild.). Foresta, 1(2), 79–87.
Santoso, A., & Malik, J. (2005). Pengaruh Jenis Perekat dan Kombinasi Jenis Kayu Terhadap Keteguhan Rekat Kayu Lamina (pp. 375–384). Pusat Penelitian dan Pengembangan Hasil Hutan.
Saparudin. (2010). Laporan Pelaksanaan Kegiatan Praktek Kerja Lapang ( Pkl ) Di Pt. Cahaya Samtraco Utama Samarinda.
Sari, N. M., & Praja, E. E. (2006). Pengaruh Pola Sambungan dan Banyaknya Jumlah Lapisan terhadap Sifat Fisika dan Mekanika Papan Lamina Kayu Meranti Merah (Shorea leprosula Miq.). Jurnal Hutan Tropis Borneo, 18, 33–38.
Sari, R. J. P. (2011). Karakteristik Balok Laminasi dari Kayu Sengon (Paraserianthes falcataria (L.) Nielson), Manii (Maesopsis eminii Willd.), dan Akasia (Acacia mangium Engl.). Institut Pertanian Bogor.
Sinaga, M., & Hadjib, N. (1989). Sifat Mekanis Kayu Lamina Gabungan dari Kayu Pinus dan Kayu Eucalyptus. Duta Rimba, 15.
Somadona, S., Sribudiani, E., & Elsa Valencia, D. (2020). Karakteristik Balok Laminasi Kayu Akasia (Acacia mangium) Dan Meranti Merah (Shorea leprosula) Berdasarkan Susunan Lamina dan Berat Labur Perekat Styrofoam. Wahana Forestra: Jurnal Kehutanan, 15(2), 53–64. https://doi.org/10.31849/forestra.v15i2.5039
Supraptono, B. (2014). Perekatan Kayu, Perannya Dalam Industri Kayu (L. Y. Inayatuzzahrah (ed.); First Edit). Mulawarman University Press.
Utomo, R. B., & Dayadi, I. (2023). Pengaruh Jenis Perekat dan Pengerjaan Permukaan Bidang Rekat Terhadap Keteguhan Geser Rekat Laminasi Kayu Terap (Artocarpus elasticus Reinw. ex. Blume). Jurnal Atomik, 08(2), 71–76.
Wulandari, F. T., & Latifah, S. (2022). Karakteristik Sifat Fisika Dan Mekanika Papan Laminasi Kayu Bayur (Pterospermum diversifolium) Sebagai Bahan Substitusi Papan Solid. Wahana Forestra: Jurnal Kehutanan, 17(2), 177–191. https://doi.org/10.31849/forestra.v17i2.9362.