Nickel acquisition affected by root density of mono- and mixed-cropping peanut and choy sum
Downloads
Nickel (Ni) and associated minerals (Cr and Mn) are naturally occurring substances in ultramafic laterites soil. It may be found in our vegetables and grains when agriculture is grown in ultramafic laterites. This study aimed to assess the contamination of Ni in edible crops affected by soil volume in mono- and mixed cropping on limonitic laterite soil. The investigation was conducted on Peanut (Arachis hypogaea L.) and Choy Sum (Brassica rapa var. parachinensis) in three different pots sizes-representing soil volume to support root growth, which was filled with 0.5 kg (small), 1.0 kg (medium), and 1.5 kg (big) of limonitic laterite soil, respectively. The limonitic soil has a 7.884 mg kg-1 Ni concentration. The experiment shows that Ni concentration in peanut and Choy Sum shoots of mono-cropping in small, medium, and big pots achieve 20, 90, 120 mg kg-1 and 51, 67, and 95 mg kg-1, respectively. Meanwhile, in mixed cropping, Ni concentration in small, medium, and big pots of peanut and Choy Sum shoots are lower only by 33, 50, and 51 mg kg-1 and 15, 52, and 63 mg kg-1, respectively. Contamination of Ni in Peanut and Choy Sum shoots increases with the increasing soil volume, and mixed cropping is a potential strategy to reduce the acquisition of Ni.
Agboola, D.A., Ogunyale, O.G., Fawibe, O.O., & Ajiboye, A.A. (2014). A review of plant growth substances: Their forms, structures, synthesis and functions. Journal of Advanced Laboratory Research in Biology, 5(4), 152-168.
Batool, S. (2018). Effect of Nickel Toxicity on Growth, Photosynthetic Pigments and Dry Matter Yield of Cicer Arietinum L. Varieties. Asian Journal of Agriculture and Biology, 6(2), 143-148.
Shridhar Rao, J., Vadez, V., Bhatnagar-Mathur, P., Narasu, M. L., & Sharma, K. K. (2012). Better root: shoot ratio conferred enhanced harvest index in transgenic groundnut overexpressing the rd29A: DREB1A gene under intermittent drought stress in an outdoor lysimetric dry-down trial. Journal of SAT Agricultural Research, 10, 1-7. http://oar.icrisat.org/id/eprint/6249.
Brown, P. H., Welch, R. M., & Cary, E. E. (1987). Nickel: A micronutrient essential for higher plants. Plant physiology, 85(3), 801-803. https://doi.org/10.1104/pp.85.3.801
Cai, X., Qiu, R., Chen, G., Zeng, X., & Fang, X. (2007). Response of microbial communities to phytoremediation of nickel contaminated soils. Frontiers of Agriculture in China, 1(3), 289–95. https://doi.org/10.1007/s11703-007-0049-0.
Canarini, A., Kaiser, C., Merchant, A., Richter, A., & Wanek, W. (2019). Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science, 10, 157. https://doi.org/10.3389/fpls.2019.00157.
Chiarucci, A., & Baker, A. J. (2007). Advances in the ecology of serpentine soils. Plant and Soil, 293, 1-2. https://doi.org/10.1007/s11104-007-9268-7.
Doreswamy, K., Shrilatha, B., Rajeshkumar, T., & Muralidhara. (2004). Nickel‐induced oxidative stress in testis of mice: evidence of DNA damage and genotoxic effects. Journal of andrology, 25(6), 996-1003. https://doi.org/10.1002/j.1939-4640.2004.tb03173.x.
Feng, J., Lv, W., Xu, J., Huang, Z., Rui, W., Lei, X., Ju, X., & Li, Z. (2022). Overlapping Root Architecture and Gene Expression of Nitrogen Transporters for Nitrogen Acquisition of Tomato Plants Colonized with Isolates of Funneliformis mosseae in Hydroponic Production. Plants, 11, 1176. https://doi.org/10.3390/ plants11091176
Goldberg, D.E., & Fleetwood, L. (1987). Competitive effect and response in four annual plants. The Journal of Ecology, 75(4), 1131-1143. https://doi.org/10.2307/2260318.
Gopal, R. (2014). Excess nickel modulates oxidative stress responsive enzymes in groundnut. Journal of Plant Nutrition, 37(9), 1433-1440. https://doi.org/10.1080/01904167.2014.881872.
Herz, K., Dietz, S., Gorzolka, K., Haider, S., Jandt, U., Scheel, D., & Bruelheide, H. (2018). Linking root exudates to functional plant traits. PloS one, 13(10), e0204128. https://doi.org/ 10.1371/journal.pone.0204128.
Isaac, M.E., & Borden, K.A. (2019). Nutrient acquisition strategies in agroforestry systems. Plant and Soil, 444, 1-19. https://doi.org/10.1007/s11104-019-04232-5.
Ismail, M.R., & Davies, W.J. (1998). Root restriction affects leaf growth and stomatal response: the role of xylem sap ABA. Scientia Horticulturae, 74(4), 257-268. https://doi.org/10.1016/S0304-4238(98)00090-9.
Jiao, Y., Wang, E., Chen, W., & Smith, D.L. (2017). Complex interactions in legume/cereal intercropping system: role of root exudates in root-to-root communication. BioRXiv, 097584. https://doi.org/10.1101/097584.
Kawasaki, A., Donn, S., Ryan, P.R., Mathesius, U., Devilla, R., Jones, A., & Watt, M. (2016). Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PloS one, 11(10), e0164533. https://doi.org/ 10.1371/journal.pone.0164533.
Kharkina, T. G., Ottosen, C. O., & Rosenqvist, E. (1999). Effects of root restriction on the growth and physiology of cucumber plants. Physiologia Plantarum, 105(3), 434-441. https://doi.org/10.1034/j.1399-3054.1999.105307.x.
Li, H., Testerink, C., & Zhang, Y. (2021). How roots and shoots communicate through stressful times. Trends in plant science, 26(9), 940-952. https://doi.org/10.1016/j.tplants.2021.03.005.
Murphy, G.P., File, A.L., & Dudley, S.A. (2013). Differentiating the effects of pot size and nutrient availability on plant biomass and allocation. Botany, 91(11), 799-803. https://doi.org/10.1139/cjb-2013-0084.
Pirmana, V., Alisjahbana, A. S., Yusuf, A. A., Hoekstra, R., & Tukker, A. (2023). Economic and environmental impact of electric vehicles production in Indonesia. Clean Technologies and Environmental Policy, 1-15. https://doi.org/10.1007/s10098-023-02475-6.
Puig, J., Pauluzzi, G., Guiderdoni, E., & Gantet, P. (2012). Regulation of shoot and root development through mutual signaling. Molecular Plant, 5(5), 974-983. https://doi.org/10.1093/mp/sss047.
Rahayu, Y.S., Walch-Liu, P., Neumann, G., Römheld, V., von Wirén, N., & Bangerth, F. (2005). Root-derived cytokinins as long-distance signals for NO3−-induced stimulation of leaf growth. Journal of experimental botany, 56(414), 1143-1152. https://doi.org/10.1093/jxb/eri107.
Revindo, M.D., & Alta Aditya, A. (2020). Trade and Industry Brief. Seri Analisis Ekonomi. LPEM, Universitas Indonesia. (January).
Rubio, G., Walk, T., Ge, Z., Yan, X., Liao, H., & Lynch, J. P. (2001). Root gravitropism and below-ground competition among neighbouring plants: a modelling approach. Annals of Botany, 88(5), 929-940. https://doi.org/10.1006/anbo.2001.1530.
Saad, R., Kobaissi, A., Robin, C., Echevarria, G., & Benizri, E. (2016). Nitrogen fixation and growth of Lens culinaris as affected by nickel availability: a pre-requisite for optimization of agromining. Environmental and Experimental Botany, 131, 1-9. https://doi.org/10.1016/j.envexpbot.2016.06.010.
Shahzad, B., Tanveer, M., Rehman, A., Cheema, S. A., Fahad, S., Rehman, S., & Sharma, A. (2018). Nickel; whether toxic or essential for plants and environment-A review. Plant Physiology and Biochemistry, 132, 641-651. https://doi.org/10.1016/j.plaphy.2018.10.014.
Sierra, J., & Desfontaines, L. (2009). Role of root exudates and root turnover in the below-ground N transfer from Canavalia ensiformis (jackbean) to the associated Musa acuminata (banana). Crop and Pasture Science, 60(3), 289-294. https://doi.org/10.1071/CP08215.
Someya, N., Sato, Y., Yamaguchi, I., Hamamoto, H., Ichiman, Y., Akutsu, K., Sawada, H., & Tsuchiya, K. (2007). Alleviation of nickel toxicity in plants by a rhizobacterium strain is not dependent on its siderophore production. Communications in soil science and plant analysis, 38(9-10), 1155-1162. https://doi.org/10.1080/00103620701328040.
Stampatori, D., Raimondi, P.P., & Noussan, M. (2020). Li-ion batteries: A review of a key technology for transport decarbonization. Energies, 13(10), 2638. https://doi.org/10.3390/en13102638.
Wallace, A., & Romney, E.M. (1980). Interactions of nitrogen sources and excess nickel on bush beans. Journal of Plant Nutrition, 2(1-2), 75-78. https://doi.org/10.1080/01904168009362739.
Wheeldon, C.D., & Bennett, T. (2021). There and Back Again: An Evolutionary Perspective on Long-Distance Coordination of Plant Growth and Development. Seminars in Cell & Developmental Biology, 109, 55–67. https://doi.org/10.1016/j.semcdb.2020.06.011.
Wilson, J. B. (1988). Shoot competition and root competition. Journal of Applied Ecology, 25(1), 279–96. https://doi.org/10.2307/2403626.
Yu, X.M., Li, J.F., Zhu, L.N., Bo, W.A.N.G., Lei, W.A.N.G., Yang, B.A.I., Zhang, C.X., Xu, W.P., & WANG, S.P. (2015). Effects of root restriction on nitrogen and gene expression levels in nitrogen metabolism in Jumeigui grapevines (Vitis vinifera L.× Vitis labrusca L.). Journal of Integrative Agriculture, 14(1), 67-79. https://doi.org/10.1016/S2095-3119(14)60876-5.
Zaidi, A., & Khan, S. (2005). Interactive effect of rhizotrophic microorganisms on growth, yield, and nutrient uptake of wheat. Journal of plant Nutrition, 28(12), 2079-2092. https://doi.org/10.1080/01904160500320897.
Zeng, R.S., Mallik, A.U., & Setliff, E. (2003). Growth stimulation of ectomycorrhizal fungi by root exudates of Brassicaceae plants: role of degraded compounds of indole glucosinolates. Journal of chemical ecology, 29(6), 1337-1355. DOI: 10.1023/A:1024257218558.