Potensi Alocasia macrorhiza Sebagai Fitoremediator Logam Kromium

Authors

  • Wahyu Surakusumah Departemen Pendidikan Biologi, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam Universitas Pendidikan Indonesia
  • Tina Safaria Nilawati Departemen Pendidikan Biologi, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam Universitas Pendidikan Indonesia
  • Rizka Khairunisa Departemen Pendidikan Biologi, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam Universitas Pendidikan Indonesia

Abstract

Chromium and its compounds are widely used by several industries as raw material. Chromium when polluting the soil can have adverse effects on the environment and humans. One technique that can be used to remediate the quality of soil contaminated by chromium is the phytoremediation method. The purpose of this study was to identify the potential of Alocasia macrorrhiza as a phytoremediator chromium agent. The research was conducted in two stages consisting of media optimization stage and phytoremediation parameter measurement stage. The parameters measured consisted of plant biomass, chlorophyll content, physiological responses, factor translocation, factor biconcentration and factor tolerance. The results showed that Alocasia macrorrhiza has the potential as a phytoremediation agent for chromium-contaminated soils with concentrations less than 401 ± 0.02 ppm, has the ability to reduce chromium content in soils by 37.94% and the mechanism of metal chromium absorption through rhizofiltration.

References

Ansari, M. K. A., Shao, H. B., Umar, S., Ahmad, A., Ansari, S. H., Iqbal, M., Owens, G., 2013. Screening Indian Mustard Genotypes for Phytoremediating Arsenic-Contaminated Soils. Clean-Soil Air Water. 41:195–201.

Gerhardt, E. K., Gerwing, P. D., Greenberg, B. M., 2017. Opinion: Taking Phytoremediation From Proven Technology To Accepted Practice. Plant Science. 256: 170-185.

Gomes, M. P., Carvalho, M., Carvalho, G. S., Marques, T., Garcia, Q. S., Guilherme, L. R. G., Soares, A. M., 2013. Phosphorus Improves Arsenic Phytoremediation by Anadenanthera peregrina by Alleviating Induced Oxidative Stress. Int J Phytorem. 15:633–646.

Hadif, W. M., Rahim, S. A., Sahid. I., Rahman, A., Ibrahim, I., 2015. Influence of Chromium Metal on Chlorophyl Content in Leave of Paddy Oryza sativa L. Int. J. Chem. Sci. 13(3): 1238-1252.

Holloway, W. D., Argall, M. E., Jealous, W. T., Lee, J. A., Bradbury, H., 1989. Organic Acids and Calcium Oxalate in Tropical Root Crops. J. Agric. Food Chem. 37(2): 337-341.

Kotas, J., and Stasicka, Z., 2000. Commentary: Chromium Occurance in The Enviroment and Methods of Its Speciation. Environ. Pollut. 107: 263-83.

Malik, R. A., Surakusumah, W., Surtikanti, H. K., 2016. Potensi Tanaman Air Sebagai Fitoakumulator Logam Kromium Dalam Limbah Cair Tekstil. Jurnal Riset Teknologi Pencegahan Pencemaran Industri. 7(1).

Mellem, J. J., Baijnath, H., Odhav, B., 2012. Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the Ability for Hyperaccumulation by Amaranthus dubius. African Journal of Agricultural Research. 7(4): 591-596.

Panda, S. K., and Choudhury, S., 2005. Chromium Stress in Plants. Braz. J. Plant Physiol. 17(1): 95-102.

Sah, F. R., Ahmad, N., Masodd, K. R., Peralta, V. J., 2010. Plant Adaptation and Phytoremediation: Heavy Metal Toxicity in Plant. Springer Science Business Media. 71-79.

Singh, S., Singh, P. K., Kumar, V., Shukla, V. K., 2011. Growth and Flower Yield of Tagetus patula Plants on Tannery Waste Amended Soil Medium. Rec. Res. Sci. Tech. 3: 66-69.

Shivakumar, D., Kandaswamy, A. N., Gomathi, V., Rajeshwaran, R., Murugan, N., 2014. Bioremediation Studies on Reduction of Heavy Metals Toxicity. Poll Res. 33(3): 553-558.

Shrivastava, R., Upreti, R. K., Seth, P. K., Chaturvedi, U. C., 2002. Effect of Chromium on The Immune System. FEMS Immunology and Medical Microbiology. 34: 1-7.

Sopyan, R., Sikanna, Sumarni, N. K., 2014. Fitoakumulasi Merkuri oleh Akar Tanaman Bayam Duri Amarantus Spinosus Linn. Pada Tanah Tercemar. Online Journal of Natural Science. 3(1): 31-39.

Subrahmanyam, D., 2008. Effects of Chromium Toxicity on Leaf Photosynthetic Characteristics and Oxidative Changes in Wheat Triticum aestivum L. Photosynthetica. 46.

Tam, N. E. Y., Wong, Y. S., Lan, C. Y., Wang, L. N., 1998. Litter Productionan Decompositionin Asubtro-Pical Mangrove Swamp Receiving Wastewater. Journal of Experimental Marine Biology and Ecology. 226(1): 1-18.

Usman, A. R. A., Alkredaa, R. S., Al-Wabel, M. I., 2013. Heavy Metal Contamination in Sediments and Mangroves From The Coast of Red Sea: Avicennia sp. Marina as Potential Metal Bioaccumulator. Ecotoxicol Environ Saf. 97: 263-270.

Vajpaye, P., Tripathi, R. D., Rain, U. N., Ali, M. B., Singh, S. N., 2000. Chromium (VI) Accumulation Reduces Chlorophyll Biosynthesis, Nitrate Reductase Activity and Protein Content in Nymphaea alba L. Chemosphere. 41(7): 1075-1082.

Downloads

Published

2020-08-25