PENERAPAN TEKNOLOGI BIOCHAR BERBASIS KARBON OFFSET MENGGUNAKAN TONGKOL JAGUNG PADA KELOMPOK TANI MASSEDDI I KABUPATEN WAJO
DOI:
https://doi.org/10.20956/jdp.v10i1.28340Keywords:
biochar, bioremediasi, kredit karbon, ofseet karbon, pupuk slowreleaseAbstract
Limbah pertanian merupakan sumber bahan organik berkelanjutan di dunia. Untuk mengatasi penurunan kesuburan tanah yang berkepanjangan, lahan pangan membutuhkan penambahan bahan organik secara berkelanjutan. Biochar merupakan bahan organik yang persisten tersimpan dalam tanah. Tujuan kegiatan ini adalah untuk meningkatkan wawasan petani dalam memanfaatkan teknologi biochar tanpa asap dalam mengelola tongkol jagung sesuai prosedur karbon kredit. Metode pelaksanaan kegiatan terdiri dari: 1) Training prosedur standarisasi; 2) Produksi biochar dan pupuk slow release; dan 3) Aplikasi biochar sebagai bahan pembenah tanah. Hasil dari kegiatan ini adalah: 1) Meningkatnya kemampuan kelompok tani memproduksi biochar sesuai prosedur karbon kredit; 2) Sertifikasi biochar untuk kelompok tani; dan 3) Meningkatnya kandungan C-organik tanah. Dalam kegiatan ini melibatkan 40 orang anggota Kelompok Tani Masseddi I yang berkomitmen untuk mengolah limbah jagung menggunakan teknologi biochar sesuai prosedur karbon kredit sebagai tindak mitigasi petani jagung menghadapi perubahan iklim.
ABSTRACT
Agricultural waste is a source of sustainable organic matter in the world. To overcome the prolonged decline in soil fertility, food fields require the addition of organic matter on an ongoing basis. Biochar is a persistent organic material stored in the soil. This activity aims to increase farmers' insight into utilizing smokeless biochar technology in managing corn cobs according to the carbon credit procedure. Methods in implementing activities consist of 1) Standardization procedure training, 2) Biochar and slow-release fertilizer production, and 3) Application of biochar as a soil amendment. The results of this activity are: 1) Increasing the ability of farmer groups to produce biochar according to carbon credit procedures; 2) Biochar certification for farmer groups; and 3) Increasing soil C-organic content. This activity involved 40 Masseddi I Farmer Group members committed to processing corn waste using biochar technology according to the carbon credit procedure as a mitigation measure for corn farmers facing climate change.
Keywords: Biochar, bioremediation, carbon credits, carbon offset, slow-release fertilizer.
ABSTRACT
Agricultural waste is a source of sustainable organic matter in the world. To overcome the prolonged decline in soil fertility, food fields require the addition of organic matter on an ongoing basis. Biochar is a persistent organic material stored in the soil. This activity aims to increase farmers' insight into utilizing smokeless biochar technology in managing corn cobs according to the carbon credit procedure. Methods in implementing activities consist of 1) Standardization procedure training, 2) Biochar and slow-release fertilizer production, and 3) Application of biochar as a soil amendment. The results of this activity are: 1) Increasing the ability of farmer groups to produce biochar according to carbon credit procedures; 2) Biochar certification for farmer groups; and 3) Increasing soil C-organic content. This activity involved 40 Masseddi I Farmer Group members committed to processing corn waste using biochar technology according to the carbon credit procedure as a mitigation measure for corn farmers facing climate change.
Keywords: Biochar, bioremediation, carbon credits, carbon offset, slow-release fertilizer.
References
BPS. (2018). Luas Panen Jagung Menurut Provinsi, 2014 - 2018. https://www.pertanian.go.id/Data5tahun/TPATAP-2017(pdf)/13-LPJagung.pdf
Burrell, L. D., Zehetner, F., Rampazzo, N., Wimmer, B., & Soja, G. (2016). Long-term effects of biochar on soil physical properties. Geoderma, 282, 96–102. https://doi.org/10.1016/j.geoderma.2016.07.019
Ceranic, M., Kosanic, T., Djuranovic, D., Kaludjerovic, Z., Djuric, S., Gojkovic, P., & Bozickovic, R. (2016). Experimental investigation of corn cob pyrolysis. Journal of Renewable and Sustainable Energy, 8(6). https://doi.org/10.1063/1.4966695
Domingues, R. R., Trugilho, P. F., Silva, C. A., A, I. C. N., Melo, C. A., Magriotis, Z. M., Sa, M. A., & Melo, D. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. 1–19.
Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644–653. https://doi.org/10.1016/j.biortech.2012.03.022
Gao, S., Hoffman-Krull, K., Bidwell, A. L., & DeLuca, T. H. (2016). Locally produced wood biochar increases nutrient retention and availability in agricultural soils of the San Juan Islands, USA. Agriculture, Ecosystems and Environment, 233, 43–54. https://doi.org/10.1016/j.agee.2016.08.028
Głąb, T., Palmowska, J., Zaleski, T., & Gondek, K. (2016). Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, 11–20. https://doi.org/10.1016/j.geoderma.2016.06.028
Hammes, K., & Schmidt, M. W. I. (2009). Changes of Biochar in Soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and tech- nology (Page: 33-43). In J. and J. S. Lehmann (Ed.), Biochar for Environmental Management: Science and Technology and Implementation (second, pp. 169–178). Earthscan in the UK and USA. https://doi.org/doi.org/10.4324/9781849770552.
Isidoria, M., Gonzaga, S., Mackowiak, C., Quintao, A., Almeida, D., Ilmar, J., Carvalho, T. De, & Rocha, K. (2017). Catena Positive and negative e ff ects of biochar from coconut husks , orange bagasse and pine wood chips on maize ( Zea mays L .) growth and nutrition. Catena, October 2016, 0–1. https://doi.org/10.1016/j.catena.2017.10.018
Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. Agriculture, Ecosystems and Environment, 140(1–2), 309–313. https://doi.org/10.1016/j.agee.2010.12.005
Ma, N., Zhang, L., Zhang, Y., Yang, L., & Yu, C. (2016). Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application. 1–10. https://doi.org/10.1371/journal.pone.0154091
Nurhayati, Jamil, A., & Anggraini, S. (2015). Potensi Limbah Pertanian sebagai Pupuk Organik Lokal di Lahan Kering Dataran Rendah Iklim Basah. Iptek Tanaman Pangan, 6(2), 193–202.
Raj, N., Mulder, J., Elizabeth, S., Martinsen, V., Peter, H., & Cornelissen, G. (2018). Science of the Total Environment Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Science of the Total Environment, 625, 1380–1389. https://doi.org/10.1016/j.scitotenv.2018.01.022
Rawat, J., Saxena, J., & Sanwal, P. (2019). Biochar : A Sustainable Approach for Improving Plant Growth and Soil Properties. https://doi.org/DOI: 10.5772/intechopen.82151
Ren, T., Fan, P., Zuo, W., Liao, Z., Wang, F., Wei, Y., Cai, X., & Liu, G. (2023). Biochar-based fertilizer under drip irrigation: More conducive to improving soil carbon pool and promoting nitrogen utilization. Ecological Indicators, 154(March), 110583. https://doi.org/10.1016/j.ecolind.2023.110583
Samanta, A. K., Senani, S., Kolte, A. P., Sridhar, M., Sampath, K. T., Jayapal, N., & Devi, A. (2012). Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food and Bioproducts Processing, 90(3), 466–474. https://doi.org/10.1016/j.fbp.2011.11.001
Srivastava, R. K., Shetti, N. P., Reddy, K. R., & Aminabhavi, T. M. (2020). Sustainable energy from waste organic matters via efficient microbial processes. Science of the Total Environment, 722, 137927. https://doi.org/10.1016/j.scitotenv.2020.137927
Wang, C., Alidoust, D., Yang, X., & Isoda, A. (2018). Effects of bamboo biochar on soybean root nodulation in multi-elements contaminated soils. Ecotoxicology and Environmental Safety, 150(December 2017), 62–69. https://doi.org/10.1016/j.ecoenv.2017.12.036
Wang, C., Luo, D., Zhang, X., Huang, R., Cao, Y., Liu, G., Zhang, Y., & Wang, H. (2022). Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environmental Science and Ecotechnology, 10, 100167. https://doi.org/10.1016/j.ese.2022.100167
Young, A. (1989). Agroforestry for soil conservation. In Soil erosion and conservation (First). CAB International International Council for Research in Agroforestry. http://apps.worldagroforestry.org/downloads/Publications/PDFS/B05682.pdf
Zong, Y., Chen, D., & Lu, S. (2014). IZong, Y., Chen, D., & Lu, S. (2014). Impact of biochars on swell – shrinkage behavior , mechanical strength , and surface cracking of clayey soil, (1), 920–926.mpact of biochars on swell – shrinkage behavior , mechanical strength , and surface cracking o. 1, 920–926.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Jurnal Dinamika Pengabdian
This work is licensed under a Creative Commons Attribution 4.0 International License.
Penulis diwajibkan untuk menandatangani "Surat Perjanjian Hak Cipta" atau Copyright Agreement untuk penyerahan ijin kepada pihak jurnal untuk menerbitkan tulisannya.
Authors are required to sign a "Copyright Agreement" to submit permission to the journal to publish their writings.