Bioakumulasi Ion Logam Kadmium Oleh Fitoplankton Laut Tetraselmis chuii dan Chaetoceros calcitraus

Authors

  • Muhammad Sjahrul Department of Chemistry, Hasanuddin University
  • Arifin Arifin FKIP, Universitas Haluoleo, Kendari

DOI:

https://doi.org/10.20956/ica.v3i1.5971

Abstract

The use of the marine phytoplankton, Tetraselmi chuii and Chaetoceros calcitrans have already been reported. The relationships of the usefulness as phytoremidiator on cadmium polluted marine are not yet well understood. Therefore, this study was conducted to evaluate the influence of Cd2+ addition on fitoplankton medium towards the growth, interacting time, pH medium that could accumunlate Cd2+ in the function groups involved in the bioaccumulation prosess of Cd2+ by phytoplankton. The method of the analysis and the data collectionwas carried out on (1) the growth acceleration, the number of phytoplankton cells, and the chlorophyl-a content; (2) the Cd2+ content in phytoplankton on various interacting time, and pH medium; and (3) the infra-red spectrum of phytoplankton biomass before and after the interaction with Cd2+. The addition of Cd2+ on T. chuui medium can decrease the growth and content of chlorophyll-a, while the addition of Cd2+ on C. Calcitrans medium can increase the growth and content of chlorophyl-a. The phytoplankton can accumulate Cd2+ in the pH8 in the interacting time of 15 minutes with the optimal accumulating ability of 13.46 and 1, 055.27 mg Cd2+ per gram of T. chuii and C. Calcitrans biomasses successively. The function groups of T. Chuii involved in the bioaccumulation process of Cd2+ are-OH, CN, S=O, N-O, S-S and M-S, while on C. Calcitrans, the function groups are-OH, C=0, S-S, M-S and C=C.

Keywords: Bioaccumulation, Kadmium, Tetraselmis chuii, Chaetocer calcitrans
Key

References

Abe, K., 2001, Kadinium in the western eguatorial Pacifie. Nasl. Chem., 74: 197 – 211.

Baryla A Carrier P. Franck F, Coulomb C, Sahut C, Havaux M, 2001, Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmiumpolluted soil : causes and consequences for photosynthesis and growth, Planta 212 : 696-709.

Burcu Kokturk, 2006, Cadmium uptake and antioxidative enzyme in durum wheat cultivars in respon to increasing Cd application, Thesis, School of Engineering and Natural Sciences, Sabanci University.

Collantes G, and Prado, R., 2006, Green bloom of Tetraselmis sp. In valparaiso Bay, Facultad de Ciencias del Mar y Recursos Naturales, Universidad de Valparaiso.

Doshi, H.,A. Ray, and I.L. Kothari, 2007.Bioremediation potential of live & dead Spirulina. Spectroscopic, kinetics and SEM studies. Biotechnol Bioeng, 96 (6) 1051-1063.

Falkowski PG, dan Raven JA, 2007, Aquatic photosystem, Ed 2 Princenton University Press Princenton. NJ.

Gin. K. Y.Z. Tang, and M.A Aziz, 2001. Heavy Metal Uptake by Algae. In : Kojima H. Lee YK. Editors. Photosynthetic Microorganisms in Environmental Biotechchology. Berlin. Springer.

Grill, E., Winnacker E.L., Zenk, M.H. (1985) : Phytochelatins : The principal heavy metal complexing peptides of higher plant. Science, 230-674.

Hirata. K, Tsujimoto. Y, Namba T., Toshiko Ohta T., Hirayanagi N, Miyasaka H., Zenk M.H., and Miyamoto K., 2001 . Strong induction of phytochelatin synthesis by zinc in marine green alga, Dunaliella tertiolecta, J. Bioscience and Bioscience, 92 (1) 24-29.

Ho, T. Y. 2003, The elemental composition of somb marine phytoplankton. J. Phycol. 39 : 1145 – 1159.

Lannelli MA, Pietrini F, Fiore L, Petrilli L, Massacci A. 2002, Antoxidant response to cadmium in Phragmites australis plants Plant Physiol Biochem 40 : 977-982.

Inthorn D., 2001 Removal of heavy metal by using microalgae. Edited by Hiroyuki Kojima and Yuan Kun Lee, Photosynthetic Microorganisms in Environmental Biotechnology. Springer-Verlag Hong Kong Ltd 2001. 310 : 111-169

Kawakami, S.K, Gledhill M, and Achterberg E.P., 2006, Determination of phytochelatins and glutathione in phytoplankton from natural waters using HPLC with fluorescence detection, TrAc Trends in analtycal chemistry, 25 (2) : 133-142.

Lane T. W., 2005, A cadmium enzyme from a marine diatom. Nature 435, 42

Mercado J.M., Teodora R., dan Dolores C., 2009, Effect of carbonic anhyadrase inhibitors on the inorganic carbon uptake by phytoplankton natural assemblages, J. Phycol, 45, 8 – 15.

Morel FMM, 2005, A cadmium enzyme from a marine diatom. Nature 435, 42

Parsons, T.R., Y. Maita and C.M. Lalli, (1984), A Manual of chemical and Biological Methods for Seawater Analysis Pergamon Press, Ox ford.

Reinfelder, J. R., 2000, Kraepiel, A.M.L & Morel, F.M. M. Unicellular C4 photosynthesis in a marine diatom. Nature 407 996-999.

Robert Perry, 2003, A Guide to the Marine Plankton of southern California, 3rd Edition, UCLA Ocean GLOBE & Malibu High School.

Schat H, Ligany M, Vooijs R, Hartley WJ, Bleeker PM., 2002 The role of phytochelatins in constitutive and adaptive heavy metal tolrances in hyperaccumulator and nonhyperaccumulator metallphytes Journal of Biochemistry, 40 : 577-584.

Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langefeld-Heyser R, Godbold DL, Polle A., 2001, Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots, Plants Physiol, 127 : 887-898

Seafdec, 1985, Prawn Hatchery design and Operational, Aguaculture Extention Manual No. 9, Aguaculture Department, Tigbauan, Illiolo, Philippines.

Sunda W. G. and S.A Hunstsman, 2000, Effect of Zn, Mn and Fe on Cd accumulation in phytoplankton : Implications for ocanic Cd cyling. Limnol, Ocoanogr. 45 : 1501-1516.

Wang, X., dan R.C.H. Dei, 2001, Effeat of major nutrient addifions on metal uptake in phytoplankton, Environ Pollut, 111 : 233 – 240.

Xu Y, Feng L, Jefrey PD, Shi Y Morel FMM., 2008. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms.Nature 452 : 56-61.

Sumper, M. and Brunner, E., 2006, Adv. Funct. Mater., 16.

Downloads

Published

2010-06-01

Issue

Section

Articles