Main Article Content

Abstract

MnO2/rice husk activated carbon (KASP) nanocomposites have been synthesized by directly reducing KMnO4 with KASP in an aqueous solution. XRD diffraction data showed a broad and typical peak MnO2 at 37 2theta as an indicator that the compound obtained are amorphous. Fluorescence data (XRF) also supports that after addition of KMnO4 to the rice husk based acticated carbon solution concurrently MnO2 nanoparticles deposition takes place on the surface of KASP. It is found that the morphologies of MnO2 grown on KASP can be tailored by varying the reaction ratio of KASP and KMnO4. A pseudo-capacitor with high energy density was fabricated by using MnO2/RHAC nanocomposite as positive electrode and activated carbon as negative electrode in 1 M Na2SO4 aqueous electrolyte. The pseudocapacitor can be cycled reversibly in the cell voltage of 0.2 V, and delivers a specific capacitance of 25.4 mF g-1 (based on the total mass of active electrode materials of 9.4 mg), which is much higher than that of supercapacitor without MnO2 deposition (8.6 F g-1), or there is significance increase in capacitance (± 3000 times). We obtained also that supercapacitor’s electrode developed from rice husk based activated carbon has a better performance compared to one developed from commercially activated carbon material. Such a better electrochemical performance makes nanocomposite of MnO2/KASP as a promising electrode material for supercapacitors.

Keywords

Pseudo-capacitor rice husk based activated carbon MnO2 nanoparticles

Article Details

How to Cite
Hayat Kasim, A., Zakir, M., Ramang, L. M., & Abdussamad, B. (2019). REDOX DEPOSITION OF MnO 2 NANOPARTICLES ON RICE HUSK BASED ACTIVATED CARBON AS HIGH-PERFORMANCE ELECTRODE MATERIAL FOR PSEUDO-CAPACITORS. Jurnal Akta Kimia Indonesia (Indonesia Chimica Acta), 10(1), 44-58. https://doi.org/10.20956/ica.v10i1.6406

References

  1. Bagotsky, V.S. Skundin, A.M. Volfkovich, Y.M. 2015, "Electrochemical power sources: batteries, fuel cells, and supercapacitors”, John Wiley & Sons, Inc.
  2. Beguin, F. Frackowiak, E. (Eds.). 2010. Carbons for Electrochemical Energy Storage and Conversion Systems, CRC Press, Taylor & Francis Group, Boca Raton, FL. ISBN 978-1-4200-5307-4.
  3. Beguin, F. Presser, V. Balducci, A. Frackowiak, E. 2014. “Carbon and Electrolytes for Advanced Supercapacitors (Review)”, Adv. Mater., 1-33. DOI: 10.1002/adma.201304137. Wiley-VCH Verlag GmbH&Co. KgaA, Weinheim.
  4. Chen, M.D. Wumale, T. Li, W.L. Song, H.H., Song, R.R. 2015, “Electrochemical performance of cotton stalk based activated carbon electrodes modified by MnO2 for supercapacitor”, Mat. Tech., Vol 30, pp. A2-A7.
  5. Caballero, A. Hernan, L. Morales, J. 2011. Limitations of Disordered Carbons Obtained from Biomass as Anodes for Real Lithium-Ion Batteries, Chem. Sus. Chem., 4, 658-663.
  6. Chen, H. Zeng, S. Chen M. Zhang, Y. Zheng L. Li, Q. 2016, “Oxygen evolution assisted fabrication of highly loaded carbon nanotube/MnO2 hybrid films for high performance flexible pseudosupercapacitors”, Small Nano Micro, 12(15) pp. 2035-2045.
  7. Chen, Y. Zhu, Y. Wang, Z. Li, Y. Wang, L. Ding, L. Gao, X. Ma, Y. Guo, Y. 2011. “Application studies of activated carbon derived from rice husks produced by chemical-thermal process – a review”, Adv. Coll. Inter. Sci., 163, 39-52.
  8. Daubert, J.S. Lewis, N.P. Gotsch, H.N. Mundy, J.Z. Monroe,D.N. Dickey, E.C. Losego, M.D. Parsons, G.N. 2015, “Effect of meso- and micro-porosity in carbon electrodes on atomic layer deposition of pseudocapacitive V2O5 for high performance supercapacitors, Chem. Mater., 27(19), pp. 6524-6534, DOI:10.1021/acs.chemmater.5b01602
  9. Dutta, S. Bhaumik, A. Wu, K.C.W. 2014,”Hierarchichally porous carbon derived from polymers and biomass: effect of interconnected pores on energy application (review)”, Energy Environ. Sci., 7, 3574-3592.
  10. Frackowiak, E. Beguin, F. 2001. “Carbon materials for the electrochemical storage of energy in capacitors (review)”. Carbon. 39(937-950).
  11. Frackowiak, E. Beguin, F. 2002. “Electrochemical storage of energy in carbon nanotubes and nanostructured carbons”. Carbon. 40(1775-1787).
  12. He, X. Ling, P. Qiu, J. Yu, M. Zhang, X. Yu, C. Zheng, M. 2013. “Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density”, J. Power Sources, 240, 109-113.
  13. Ioannidou, O. Zabaniotou, A. 2007.”Agricultural residues as precursor for activated carbon production-a review”. Renewable & Sustainable Energy Reviews. 11(1966-2005).
  14. Kalyani, P. Anitha, A. 2013. “Biomass Carbon and Its Prospects in Electrochemical Energy Systems (Review)”, Int. J. Hydrogen Energy, 38, 4034-45.
  15. Lai, F. Miao, Y. Huang, Y. Chung, T.S. Liu, T. 2015, “Flexible hybridmembranes of NiCo2O4-doped carbon nanofiber-MnO2 core-sheath nanostructures for high performance supercapacitors”, J. Phys. Chem. C, 119(24), pp. 13442-13450.
  16. Li, D. Yang, D. Quan, F. Wang, B. Zhang, L. Zhu, S. Wang, L. 2015, “Carbon fibers coated with metal oxides nanostructures as electrode materials for energy storage devices”, Nano Reports, 2015, 1, 29-41.
  17. Li, X. Xing, W. Zuo, S. Zhou, J. Li, F. Qiao, S. Z. Lu, G.Q. 2011. “Preparation of capacitor’s electrode from sunflower sheed shell”. Bioresour. Technol. 102 (1118–1123).
  18. Ma, G. Yang, Q. Sun, K. Peng, H. Ran, F. 2015,”Nitrogen-doped porous carbon derived from biomass waste for high performance supercapacitor”, Bioresource Tech. 2015, 197, 137-142.
  19. Manik, S.T. Taer, E. Iwantono, 2013, “Impedansi Spektroskopi Sel Superkapasitor menggunakan Elektroda karbon bentuk monolit dari ampas tebu”, Jurnal On Line Mahasiswa MIPA Universitas Riau.
  20. Nabais, J.V. Carrott, P. Ribeiro Carrott, M.M.L. Luz, V. Ortiz, A.L. 2008. “Influence of preparation conditions in the textural and chemical properties of activated carbons from a novel biomass precursor: the coffee endocarp”. Bioresour. Technol. 99 (7224–7231).
  21. Pandolfo, A.G. Hollenkamp, A.F. 2006. “Carbon properties and their role in supercapacitors”. J. Power Sources. 157(11-27).
  22. Raymundo-Piñero, E. Leroux, F. Béguin, F. 2006. “A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer”. Adv. Mater. 18 (1877–1882).
  23. Rosi, M. Ekaputra, M.P. Iskandar, M. Abdullah, M. Khairurrijal, 2012, “Superkapasitor Menggunakan Polimer Hidrogel Elektrolit dan Elektroda Nanopori Karbon”, Prosiding SEMNAS Material, Fisika, ITB.
  24. Rufford, T.E. Hulicova-Jurcakova, D. Zhu, Z.H. Lu, G.Q. 2008. “Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors”. Electrochem. Commun. 10(1594–1597).
  25. Rufford, T.E. Hulicova-Jurcakova, D. Khosla, K. Zhu, Z., Lu, G.Q. 2010. “Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse”. J. Power Sources 195 (912–918).
  26. Salunkhe, R.R. Ahn, H. Kim, J.H. Yamauchi, Y. 2015, “Rational design of coaxial structured carbon nanotube–manganese oxide (CNT–MnO2) for energy storage application”, Nanotechnology, 26, 7pp, doi:10.1088/0957-4484/26/20/204004
  27. Sekine, T. dan Zakir, M. 2008. "Oxidative Dissolution of Tc(IV)O2 •nH2O Colloids by Sonolysis". Radiochim. Acta. 96 (9-11, 625-629).
  28. Simon, P. Gogotsi, Y. 2008. “Materials for electrochemical capacitors (review)”. Nature Mat. 7 (845-855).
  29. Syarif, N. 2014. “Pengembangan kapasitor lapis ganda elektrokimia dari karbon aktif kayu gelam”, Disertasi, Universitas Indonesia
  30. Taer, E. Sugianto, Sumantre, M.A. Tsalim, R, Iwantono, Dahlan, D. 2013, “Pengaruh Ukuran Serat dan Ketebalan Membran Kulit Telur Sebagai Separator Alami pada Pengukuran Cas dan Discas dengan rapat arus yang berbeda terhadap rapat rapat energi dan daya sel superkapasitor”, Prosiding SEMNAS Fisika Univ. Andalas (SNFUA), ISBN 978-879-25-1954-9
  31. Wang, J. Xin, H.L. Wang, D. 2013. “Recent Progress on Mesoporous Carbon Materials for Advanced Energy Conversion and Storage (Review)”, Part. Part. Syst. Charact., 1-25. DOI: 10.1002/ppsc.201300315. Wiley-VCH Verlag GmbH&Co. KgaA, Weinheim.
  32. Wang, Y. T. Lu, A.H. Zhang, H.L. Li, W.C. 2011, “Synthesis of Nanostructured Mesoporous Manganese Oxide with Three-Dimensional Frameworks and Their Application in Supercapacitors”, J. Phys. Chem. C 2011, 115, 5413-5421.
  33. Wei, L. Yushin, G. 2012.”Nanostructured activated carbon from natural precursors for electrical double layer capacitors (review)”, Nano Energy, 1, 552-565.
  34. Winter, M. Brodd, R.J. 2004. “What are batteries, fuel cells, and supercapacitors? (review)” Chem. Rev. 104(4245-4269).
  35. Wu, F.C. Tseng, R.L. Hu, C.C. Wang, C.C. 2004. “Physical and electrochemical characterization of activated carbons prepared from firewood for supercapacitors”. J. Power Sources 138(351–359).
  36. Xie, J. Sun, X. Zhang, N. Xu, K. Zhou, M. Xie, Y. 2013.”Layer by layer beta-Ni(OH)2/grapheme nanohybrids for ultraflexible all solid state thin film supercapacitors with high electrochemical performance”. Nano Energy, 2, 65-74.
  37. Xing, W. Qiao, S.Z. Ding, R.G. Li, F. Lu, G.Q. Yan, Z.F. Cheng, H.M. 2006. “Superior electric double layer capacitors using OMC”. Carbon. 44(216-224).
  38. Xu, P. Wei, B. Cao, Z. Zheng, J. Gong, K. Li, F. Yu, J. Li, Q. Lu, W. Byun, J.H. Kim, B.S. Yan, Y. Chou, T.W. 2015, “Stretchable Wire-Shaped Asymmetric Supercapacitors Based on Pristine and MnO2 Coated carbon Nanotube Fibers”, ACS Nano, 9 (6), pp. 6088-6096. DOI:10.1021/acsnano.5b01244
  39. Yang, J. Liu, Y. Chen, X. Hu, Z. Zhao, G. 2008. “Carbon electrode material with high densities of energy and power”. Acta Physica-Chimica Sinica. 24(13–19).
  40. Yu, A. Chabot, V. Zhang, J. 2013, “Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications”, Taylor & Francis Group, LLC.
  41. Zakir, M. dan Sekine, T. 2009. "Oxidation Reaction of Tc(IV)O2.nH2O Nanocolloid Induced by Ultrasonic Wave". Indo. Chim. Acta. 2 (1, 46-47).
  42. Zakir, M. dan Sekine, T. 2010. "Sonolytic Oxidation of Tc(IV)O2.nH2O Nanoparticles to Tc(VII)O4- in Aqueous Solution”. Atom Indonesia. 36 (1, 17-22).
  43. Zakir, M. Maming, and Achmad, A. 2011. “Adsorption of Methylene Blue and Eosin on Rice Husk Based Activated Carbon”. Indo. Chim. Acta. 4 (2, 1-6).
  44. Zakir, M. Maming, Raya, I. Karim, A. Santi. 2012. “Pemanfaatan Energi Gelombang Ultrasonik Dalam Adsorpsi Ion Logam Berat Cu(II) pada Bioadsorben Karbon Aktif dari Sekam Padi”. Indo. Chim. Acta. 5 (2, 1-9).
  45. Zakir, M. 2013. “Ultrasound-assisted adsorption of lead(II) and copper(II) ions on rice husk activated carbon”. Proceeding of The International Conference on Quality in Research, Yogyakarta, 25-28 June 2013, pp.
  46. Zakir, M. Botahala, L. Ramang, M. St. Fauziah, Abdussamad, B. 2013. “Electro-deposition of Mn on the Surface of Rice Husk Based Active Carbon under Sonication”. Indo. Chim. Acta. 6 (2, 9-18).
  47. Zhang, F. Ma, H. Chen, J. Li, G.D. Zhang, Y. Chen, J.S. 2008. “Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks”. Bioresour. Technol. 99(4803–4808).
  48. Zhang, Y. Xing, H. Wu, X. Wang, L. Zhang, A. Xia, T.C. Dong, H.C. Li, X.F. Zhong, L.S. 2009. “Progress of electrochemical capacitor electrode materials: a review”. Int. J. Hydrogen Tech. 34 (4889–4899).
  49. Zhang, X. Sun, X. Zhang, H. Zhang, D. Ma, Y. 2012, ”Development of redox deposition of birnessite-type MnO2 on activated carbon as high-performance electrode for hybrid capacitors”, Mat. Chem. Phys., 137, 290-296.
  50. Zhou, J. Ji, Y. He, J. Zhang, C. Zhao, G. 2008. “Enhanced mesoporosity and capacitance property of spherical carbon aerogel prepared by associating Mg(OH)2 with non-ionic surfactant”. Micropor. Mesopor. Mater. 114(424–430).
  51. Zhong, C. Deng, Y. Hu, W. Qiao, J. Zhang, L. Zhang, J. 2015. “A review of electrolyte materials and compositions for electrochemical supercapacitors”. Chem. Soc. Rev., 2015, 44, 7484-7539.