Stability Analysis of Prey-Predator Model With Holling Type IV Functional Response and Infectious Predator

Authors

  • A. Muh. Amil Siddik Hasanuddin University
  • Syamsuddin Toaha Hasanuddin University
  • Andi Muhammad Anwar Hasanuddin University

DOI:

https://doi.org/10.20956/jmsk.v17i2.11716

Keywords:

prey predator model, disease, Holling response function

Abstract

Stability of equilibrium points of the prey-predator model with diseases that spreads in predators where the predation function follows the simplified Holling type IV functional response are investigated. To find out the local stability of the equilibrium point of the model, the system is then linearized around the equilibrium point using the Jacobian matrix method, and stability of the equilibrium point is determined via the eigenvalues method. There exists three non-negative equilibrium points, except , that may exist and stable. Simulation results show that with the variation of several parameter values infection rate of disease , the diseases in the system may become endemic, or may become free from endemic.

 

References

Ali S. J, Arifin N. M., Naji R. K., Ismail F. & Bachok N., 2016. Analysis of Ecological Model With Holling Type IV Functional Response. Int. J. Pure Apllied Math. Vol. 106, No. 1, 317–31

Andrews, J. F., 1968. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. Vol. 10, No. 6, 707–723.

Beay L. K., Kasbawati & Toaha S., 2017. Effects of human and mosquito migrations on the dynamical behavior of the spread of malaria. AIP Conf. Proc. Vol. 1825, 20006

Collings, J. B., 1997. The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model. J. Math. Biol. Vol. 36, No. 2, 149–168

Haque, M., 2010. A predator-prey model with disease in the predator species only. Nonlinear Anal. Real World Appl. Vol. 11, No. 4, 2224–2236

Radziński, P. & Foryś, U., 2018. Ananysis of a predator-prey model with disease in the predator species Math. Appl. Vol. 46, No. 1, 137.

Saenz, R. A. & Hethcote, H. W., 2006. Competing species models with an infectious disease. Math. Biosci. Eng. Vol. 4, No.1, 219–235

Siddik A. M. A., Toaha S. & Kasbawati, 2017, Kestabilan Model Mangsa Pemangsa dengan Fungsi Respon Holling Tipe Iii Dan Penyakit Pada Pemangsa Super, Prosiding Seminar Nasional Matematika dan Aplikasinya, Surabaya Indonesia, Oktober 16-23.

Sokol, W. & Howell, J. A., 1981. Kinetics of phenol oxidation by washed cells Biotechnol. Bioeng. Vol. 23, No. 9, 2039–2049

Toaha, S. & Azis, M. I., 2018. Stability and Optimal Harvesting of Modified Leslie-Gower Predator-Prey Model. J. Phys. Conf. Ser. Vol. 979, No.1, 12069

Toaha, S. & Rustam, 2017. Optimal harvesting policy of predator-prey model with free fishing and reserve zones. AIP Conf. Proc. Vol. 1825, 1-9.

Toaha S, Kusuma J, Khaeruddin & Bahri M., 2014. Stability analysis and optimal harvesting policy of prey-predator model with stage structure for predator. Appl. Math. Sci. Vol. 8, No. 157-160, 7923–7934

Wiraningsih E. D., Agusto F., Aryati L., Lenhart S., Toaha S., Widodo & Govaerts W., 2015. Stability analysis of rabies model with vaccination effect and culling in dogs. Appl. Math. Sci. Vol. 9, No. 77-80, 3805–3817.

Downloads

Published

2020-12-23

Issue

Section

Research Articles

Deprecated: json_decode(): Passing null to parameter #1 ($json) of type string is deprecated in /home/journal33/public_html/plugins/generic/citations/CitationsPlugin.inc.php on line 49

Most read articles by the same author(s)

1 2 3 > >>