The Comparison of Kernel Weighting Functions in Geographically Weighted Logistic Regression in Modeling Poverty in Indonesia

Authors

  • Muftih Alwi Aliu Jurusan Matematika, FMIPA, Universitas Negeri Gorontalo
  • Fahrezal Zubedi Jurusan Matematika, FMIPA, Universitas Negeri Gorontalo
  • Lailany Yahya Jurusan Matematika, FMIPA, Universitas Negeri Gorontalo
  • Franky Alfrits Oroh Jurusan Matematika, FMIPA, Universitas Negeri Gorontalo

DOI:

https://doi.org/10.20956/j.v18i3.19567

Keywords:

Fixed Gaussian Kernel, Fixed Tricube Kernel, Fixed Bisquare Kernel, GWLR, Poverty

Abstract

Indonesia is a developing country that is facing poverty. The percentage of the poor population in Indonesia in 2020 increased by 0.97 percent from 2019. A suitable analysis to overcome poverty in Indonesia is the regional effect, namely Geographically Weighted Logistic Regression (GWLR). This study aimed to compare the weighting functions of the Fixed Gaussian Kernel, Fixed Tricube Kernel, and Fixed Bisquare Kernel in the GWLR model in modeling poverty in Indonesia in 2020. The best model can determine significant factors that affected poverty in Indonesia in 2020. This study used the percentage data of poor population  and the factors affecting it, namely the Open Unemployment Rate , Human Development Index , and Total Population  in 34 Provinces in Indonesia. This study indicates that the GWLR model with the Fixed Gaussian Kernel weighting function is the best in modeling poverty in Indonesia in 2020 based on the smallest Akaike Information Criterion Corrected (AlCc) value. The GWLR model with the Fixed Gaussian Kernel weighting function shows the Open Unemployment Rate as a significant factor affecting poverty in Indonesia in 2020 in 10 provinces in Indonesia, namely Aceh, North Sumatra, West Sumatra, Riau, Jambi, South Sumatra, Bengkulu, Lampung, DKI Jakarta, and Banten.

 

References

Abapihi, B., Laome, L., & Ahmad, S. W., 2021. Modelling the number of family planning participants in Southeast Sulawesi using geographically weighted regression model. Journal of Physics: Conference Series, Vol. 1899, No. 1, p. 012108. IOP Publishing.

Alam, F. K., Widyaningsih, Y., & Nurrohmah, S., 2021. Geographically weighted logistic regression modeling on stunting cases in Indonesia. Journal of Physics: Conference Series, Vol. 1722, No. 1, p. 012085. IOP Publishing.

Desriwendi, Hoyyi, A., & Triastuti, W., 2015. Pemodelan Geographically Weighted Logistic Regression (GWLR) Dengan Fungsi Pembobot Fixed Gaussian Kernel Dan Adaptive Gaussian Kernel (Studi Kasus : Laju Pertumbuhan Penduduk Provinsi Jawa Tengah). Jurnal Gaussian, Vol. 4, No. 2, 193–204.

Edfrida, U. M., 2019. Pengaruh Indeks Pembangunan Manusia (IPM) dan Pengangguran Terhadap Tingkat Kemiskinan Kabupaten/Kota di Provinsi Kalimantan Timur dan Kalimantan Barat. Jurnal Ekonomi Daerah, Vol. 7, No. 4.

Fotheringham, A. S., Brunsdon, C., & Charlton, M., 2002. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley, New York.

Fotheringham, A. S., Yang, W., & Kang, W., 2017. Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, Vol. 107, No. 6, 1247-1265.

Hosmer, D. W., & Lemeshow, S., 2000. Applied Logistic Regression. John Wiley & Sons, Inc.

Kusumah, E. P., 2016. Olah Data Skripsi Dengan SPSS 22. In Lab Kom Manajemen Fe Ubb.

Lutfiani, N., Sugiman, & Mariani, S., 2019. Pemodelan Geographically Weighted Regression (GWR) dengan Fungsi Pembobot Kernel Gaussian dan Bi-Square. Unnes Journal of Mathematics, Vol. 8, No. 1, 82–91. https://doi.org/10.15294/ujm.v8i1.17103.

Maulani, A., Herrhyanto, N., & Suherman, M. 2016. Aplikasi Model Geographically Weighted Regression (GWR) Untuk Menentukan Faktor-Faktor Yang Mempengaruhi Kasus Gizi Buruk Anak Balita Di Jawa Barat. Jurnal EurekaMatika, Vol. 4, No. 1, 46-62.

Nur, I. M., & Al Haris, M., 2021. Geographically Weighted Logistic Regression (GWLR) with Adaptive Gaussian Weighting Function in Human Development Index (HDI) in The Province of Central Java. Journal of Physics: Conference Series, Vol. 1776, No. 1, p. 012048. IOP Publishing.

Rini, A. S., & Sugiharti, L., 2016. Faktor-Faktor Penentu Kemiskinan Di Indonesia: Analisis Rumah Tangga. Jurnal Ilmu Ekonomi Terapan, Vol. 1, No. 2, 88–104.

Runadi, T., Widyaningsih, Y., & Lestari, D., 2020. Modeling total crime and the affecting factors in Central Java using geographically weighted regression. Journal of Physics: Conference Series, Vol. 1442, No. 1, p. 012026. IOP Publishing.

Wulandari, 2018. Geographically Weighted Logistic Regression Dengan Fungsi Kernel Fixed Gaussian Pada Kemiskinan Jawa Tengah. Indonesian Journal of Statistics and Its Applications, Vol. 2, No. 2, 101–112. https://doi.org/10.29244/ijsa.v2i2.189.

Yacoub, Y., 2012. Pengaruh Tingkat Pengangguran terhadap Tingkat Kemiskinan Kabupaten / Kota di Provinsi Kalimantan Barat. Vol. 8, No. 3, 176–185.

Downloads

Published

2022-05-15

How to Cite

Aliu, M. A., Zubedi, F., Yahya, L., & Oroh, F. A. (2022). The Comparison of Kernel Weighting Functions in Geographically Weighted Logistic Regression in Modeling Poverty in Indonesia. Jurnal Matematika, Statistika Dan Komputasi, 18(3), 362–384. https://doi.org/10.20956/j.v18i3.19567

Issue

Section

Research Articles