Szeged Index and Padmakar-Ivan Index of Nilpotent Graph of Integer Modulo Ring with Prime Power Order

Authors

  • Muhammad Naoval Husni Universitas Mataram
  • I Gede Adhitya Wisnu Wardhana Universitas Mataram
  • Putu Kartika Dewi Universitas Pendidikan Ganesha
  • I Nengah Suparta Universitas Pendidikan Ganesha

DOI:

https://doi.org/10.20956/j.v20i2.31418

Keywords:

nilpotent graph, Szedge Index, Padmakar-Ivan index

Abstract

Recently, graphs have started to be used to represent a finite ring. Nikmehr and  Khojasteh in the article  defined the nilpotent graph of a ring . Denoted , is a graph with the set of vertices being all the elements in the ring  Two vertices  and  are adjacent if and only if  is nilpotent elements in the ring . Topological index is a field that discusses graph structure based on the degree of each vertex of a graph and the distance between vertices.  In this study, the author will gives the general formula of the Szeged index and Padmakar-Ivan index of the nilpotent graph graph of the modulo ring with prime power order. The result of this research is a general formula for the topological indices of nilpotent graphs of the integer modulo ring, called the Szeged index and the Padmakar-Ivan index.

References

Asmarani, E. Y., Lestari, S. T., Purnamasari, D., Syarifudin, A. G., Salwa, S., & Wardhana, I. G. A. W., 2023. The First Zagreb Index, The Wiener Index, and The Gutman Index of The Power of Dihedral Group. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 7(4), 513–520.

Basnet, D. K., Sharma, A., & Dutta, R., 2021. Nilpotent graph. Theory and Applications of Graphs, 8(1), 1–8.

Chartrand, G., Lesniak, L., & Zhang, P., 2010. Graphs & digraphs (Taylor & Francis group, Ed.; 5th ed.). CRC Press.

Gallian, J., 2009. Contemporary Abstract Algebra (M. Julet, Ed.; 7th ed.). Richad Stratton.

Gutman, I., & Dobrynin, A. A., 1998. The Szeged index -- A success story. Graph Theory Notes of New York, 34(December), 37—44.

Husni, M. N., Syafitri, H., Siboro, A. M., Syarifudin, A. G., Aini, Q., & Wardhana, I. G. A. W., 2022. The Harmonic Index And The Gutman Index Of Coprime Graph Of Integer Group Modulo With Order Of Prime Power. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(3), 961–966.

Khadikar, P. V., Karmarkar, S., & Agrawal, V. K., 2001. A Novel PI Index and its Applications to QSPR/QSAR Studies. Journal of Chemical Information and Computer Sciences, 41(4), 934–949.

Malik, D. P., Wardhana, I. G. A. W., Dewi, P. K., Widiastuti, R. S., Maulana, F., Syarifudin, A. G., & Awanis, Z. Y., 2023. Graf Nilpoten dari Gelanggang Bilangan Bulat Modulo Berorde Pangkat Prima (A Note on Nilpotent Graph of Ring Integer Modulo with Order Prime Power). JMPM: Jurnal Matematika Dan Pendidikan Matematika, 8(1), 28–33.

Nikmehr, M. J., & Khojasteh, S., 2013. On the nilpotent graph of a ring. Turkish Journal of Mathematics, 37(4), 553–559.

Putra, L. R. W., Awanis, Z. Y., Salwa, S., Aini, Q., & Wardhana, I. G. A. W., 2023. The Power Graph Representation For Integer Modulo Group With Power Prime Order. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 17(3), 1393–1400.

Semil @ Ismail, G., Sarmin, N. H., Alimon, N. I., & Maulana, F., 2023. The First Zagreb Index of the Zero Divisor Graph for the Ring of Integers Modulo Power of Primes. Malaysian Journal of Fundamental and Applied Sciences, 19(5), 892–900.

Tahya, F., & Persulessy, E. R., 2020. Nilpotent Graph in Ring Zn. Journal of Physics: Conference Series, 1463(1).

Yatin, B. Z., Gayatri, M. R., Wardhana, I. G. A. W., & Prayanti, B. D. A., 2023. Indeks Hyper-Wiener Dan Indeks Padmakar-Ivan Dari Graf Koprima Dari Grup Dihedral. Jurnal Riset dan Aplikasi Matematika (JRAM), 7(2), 138-147.

Downloads

Published

2023-12-24

Issue

Section

Research Articles

Most read articles by the same author(s)