Algoritma K-Nearest Neighbour untuk Memprediksi Harga Jual Tanah
DOI:
https://doi.org/10.20956/jmsk.v9i1.3399Abstract
Sampai saat ini masih banyak masyarakat yang kesulitan untuk menentukan pilihan dalam memilih tanah yang strategis dengan harga sesuai kemampuan karena kurangnya pengetahuan tentang harga tanah berdasarkan harga pasar. Berdasarkan permasalahan tersebut maka dilakukan perancangan dan pembuatan aplikasi yang dapat digunakan untuk memprediksi harga jual tanah dengan pendekatan algoritma K-Nearest Neighbour (KNN). Dengan aplikasi ini diharapkan dapat memberikan Informasi yang lebih akurat dan efisien tentang harga jual tanah serta membantu para calon pembeli atau penjual tanah untuk memprediksi nilai tanah sesuai dengan kriteria yang ditentukan. Data yang dikumpulkan berupa data sekunder. Metode yang digunakan adalah gabungan antara tahapan data mining yang dikenal dengan istilah Cross-Industry Standard Process for Data Mining (CRISP-DM) dan metode pengembangan perangkat lunak Waterfall Model. Secara keseluruhan aplikasi ini mampu untuk memprediksi nilai tanah dengan pemrosesan yang cukup lama karena algoritma KNN prinsipnya adalah membandingkan data testing (data baru) dengan data training (data lama) secara satu persatu. Hasil akurasi dari prediksi data testing adalah sebesar 80%.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.