Comparison of Fuzzy Time Series Lee, Chen, and Singh on Forecasting Foreign Tourist Arrivals to Indonesia in 2023
DOI:
https://doi.org/10.20956/j.v21i1.34914Keywords:
oreign tourist arrivals, fuzzy time series, Chen fuzzy, Lee fuzzy, Singh fuzzyAbstract
Tourism in Indonesia is one of the most reliable sectors because it can increase economic growth. Foreign tourist visits to Indonesia fluctuate every month, so forecasting needs to be done in order to help the Indonesian government in making decisions regarding the development process of the tourism industry to be right on target, efficient, and effective. The purpose of this research is to compare the Lee, Chen, and Singh fuzzy time series methods in forecasting foreign tourist visits to Indonesia.The data used in this study are monthly data on the number of foreign tourist visits to Indonesia from July 2014 to December 2023. The methods used for forecasting are Lee's fuzzy time series method, Chen's fuzzy time series, and Singh's fuzzy time series. The results of this study obtained MAPE values for in-sample data of foreign tourist visits to Indonesia using the Lee, Chen, and Singh fuzzy time series methods are 9.81%, 10.35%, and 2.77%, respectively. The MAPE values for out-sample data of foreign tourist arrivals to Indonesia using the Lee, Chen, and Singh fuzzy time series methods are 12.99%, 13.35%, 0.80%, respectively. From the MAPE value of in-sample data and out-sample data, it can be concluded that Singh's fuzzy time series has the smallest error value, so Singh's fuzzy time series is better and more accurate in forecasting foreign tourist visits to Indonesia.
References
Arnita, Afnisah, N., & Marpaung, F., 2020. A Comparison of the Fuzzy Time Series Methods of Chen, Cheng and Markov Chain in Predicting Rainfall in Medan. Journal of Physics: Conference Series, 1462(1). https://doi.org/10.1088/1742-6596/1462/1/012044
BPS, 2020. Statistik Kunjungan Wisatawan Mancanegara 2019.
BPS, 2021. Statistik Kunjungan Wisatawan Mancanegara 2020.
BPS, 2022. Statistik Kunjungan Wisatawan Mancanegara 2021.
Budiawan, I., Yasin, S., Harafani, H., Kiswanto, A. D., Rusli, A. R., & Marthanti, A. S., 2024. Analisis Data Kunjungan Wisatawan Mancanegara ke Indonesia pada Era Pasca Pandemi melalui Metode Visualisasi dan Peramalan. Jurnal Pendidikan Tambusai, 8(1), 4787–4800.
Chen, S.-M., 1996. Forecasting enrollments based on fuzzy time series. In Fuzzy Sets and Systems, Vol. 81.
Fathoni, Y. M., & Wijayanto, S., 2021. Forecasting Penjualan Gas LPG di Toko Sembako Menggunakan Metode Fuzzy Time Series. JUPITER: Jurnal Penelitian Ilmu Dan Teknologi Komputer, 13(2), 87–96. https://doi.org/https://doi.org/10.5281/3541.jupiter.2021.10
Febrino, M. R., Permana, D., Syafriandi, & Amalita, N., 2023. Comparison of Forecasting Using Fuzzy Time Series Chen Model and Lee Model to Closing Price of Composite Stock Price Index. UNP Journal of Statistics and Data Science, 1(2), 74–81. https://doi.org/10.24036/ujsds/vol1-iss2/22
Habibie, A., Yahya, L., & Hasan, I. K., 2023. Perbandingan Fuzzy Time Series Lee untuk Meramalkan Nilai Tukar Petani di Provinsi Gorontalo. Jambura Journal of Probability and Statistics, 4(1), 39–46. https://doi.org/10.34312/jjps.v4i1.17453
Hadi, W., 2019. Menggali Potensi Kampung Wisata Di Kota Yogyakarta Sebagai Daya Tarik Wisatawan. Journal of Tourism and Economic, 2(2), 129–139.
Hutasuhut, A. H., Anggraeni, W., & Tyasnurita, R., 2014. Pembuatan Aplikasi Pendukung Keputusan Untuk Peramalan Persediaan Bahan Baku Produksi Plastik Blowing dan Inject Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average) Di CV. Asia. JURNAL TEKNIK POMITS, 2(2), 169–174. https://doi.org/10.12962/j23373539.v3i2.8114
Intarapak, S., Supapakorn, T., & Vuthipongse, W., 2022. Classical Forecasting of International Tourist Arrivals to Thailand. Journal of Statistical Theory and Applications, 21(2), 31–43. https://doi.org/10.1007/s44199-022-00041-5
Ipan, Syaripuddin, & Nohe, D. A., 2022. Perbandingan Model Chen Dan Model Lee Pada Metode Fuzzy Time Series Untuk Peramalan Produksi Kelapa Sawit Provinsi Kalimantan Timur. Prosiding Seminar Nasional Matematika, Statistika, Dan Aplikasinya, 81–95.
Laskarjati, S. D., & Ahmad, I. S., 2022. Perbandingan Peramalan Harga Saham Menggunakan Autoregressive Integrated Moving Average (ARIMA) dan Fuzzy Time Series Markov Chain (Studi Kasus: Saham PT Indofood CBP Sukses Makmur Tbk). Jurnal Sains Dan Seni ITS, 11(6), 397–404. https://doi.org/10.12962/j23373520.v11i6.91417
Lee, M. H., Efendi, R., & Ismail, Z., 2009. Modified Weighted for Enrollment Forecasting Based on Fuzzy Time Series. In MATEMATIKA (Vol. 25, Issue 1). https://www.researchgate.net/publication/239904841
Makoni, T., Mazuruse, G., & Nyagadza, B., 2023. International tourist arrivals modelling and forecasting: A case of Zimbabwe. Sustainable Technology and Entrepreneurship, 2(1). https://doi.org/10.1016/j.stae.2022.100027
Muhammad, M., Wahyuningsih, S., & Siringoringo, M., 2021. Peramalan Nilai Tukar Petani Subsektor Peternakan Menggunakan Fuzzy Time Series Lee. Jambura Journal of Mathematics, 3(1), 1–15. https://doi.org/10.34312/jjom.v3i1.5940
Nugroho, K., 2016. Model Analisis Prediksi Menggunakan Metode Fuzzy Time Series. Jurnal Ilmiah Infokam, 12(1), 46–50. https://doi.org/https://doi.org/10.53845/infokam.v12i1.91
Nur Rais, A., Jiwana Thira, I., Nur Kholifah, D., Purwati, N., & Meisella Kristania, Y., 2020. Evaluasi Metode Forecasting Pada Data Kunjungan Wisatawan Mancanegara ke Indonesia. Jurnal Sains Dan Manajemen, 8(2).
Prasetyo, H. R., Palupi, I., & Wahyudi, B. A., 2023. Prediksi Menggunakan Model Fuzzy Time Series Studi Kasus Curah Hujan di Kabupaten Bandung. LOGIC: Jurnal Penelitian Informatika, 1(1), 8. https://doi.org/10.25124/logic.v1i1.6405
Qiu, W., Liu, X., & Li, H., 2011. A generalized method for forecasting based on fuzzy time series. Expert Systems with Applications, 38(8), 10446–10453. https://doi.org/10.1016/j.eswa.2011.02.096
Rachim, F., Tarno, & Sugito., 2020. Perbandingan fuzzy time series dengan metode Chen dan metode S.R.Singh. Jurnal Gaussian, 9(3), 306–315. https://ejournal3.undip.ac.id/index.php/gaussian/
Ramadhani, A., Wahyuningsih, S., & Siringoringo. M., 2022. Peramalan Jumlah Kunjungan Wisatawan Mancanegara Ke Indonesia Menggunakan Autoregressive Integrated Moving Average (ARIMA). Jurnal EKSPONENSIAL, 13(2), 103–112. https://doi.org/https://doi.org/10.30872/eksponensial.v13i2.1049
Sari, D. A., Nurmayanti, W. P., & Kertanah., 2023. Perbandingan Metode Fuzzy Time Series Model Chen, Lee, Dan Singh Pada Produksi Tomat Di Nusa Tenggara Barat. Prosiding Seminar Nasional Matematika, Statistika, Dan Aplikasinya.
Setiawan, W., Junati, E., & Farida, I., 2017. The Use of Triple Exponential Smoothing Method (Winter) in Forecasting Passenger of PT Kereta Api Indonesia with Optimization Alpha, Beta, and Gamma Parameters. IEEE, 198–202. https://doi.org/10.1109/ICSITech.2016.7852633
Singh, S. R., 2007. A simple method of forecasting based on fuzzy time series. Applied Mathematics and Computation, 186(1), 330–339. https://doi.org/10.1016/j.amc.2006.07.128
Singh, S. R., 2008. A computational method of forecasting based on fuzzy time series. Mathematics and Computers in Simulation, 79(3), 539–554. https://doi.org/10.1016/j.matcom.2008.02.026
Song, Q., & Chissom, B. S., 1993. Fuzzy time series and its models. In Fuzzy Sets and Systems (Vol. 54).
Xihao, S., & Yimin, L., 2008. Average-based fuzzy time series models for forecasting Shanghai compound index *. In UK World Journal of Modelling and Simulation (Vol. 1, Issue 2).
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Jurnal Matematika, Statistika dan Komputasi
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.