Modeling of Regency/City Unemployment Rates in Java Island Using Multilevel Binary Logistic Regression
DOI:
https://doi.org/10.20956/j.v21i1.35584Keywords:
Unemployment Rate, Binary Logistic Regression, Multilevel, Hierarchical DataAbstract
Multilevel binary logistic regression analysis is a development of logistic regression for hierarchical data structures. Hierarchical data is data from a population that has levels. This research examines the relationship model of Life Expectancy, Mean Years of Schooling, Expected Years of Schooling, Regency/City Minimum Wage as explanatory variables at level 1 (Regency) and Gross Regional Domestic Income (GRDP) as an explanatory variable at level 2 (Provincial) against Unemployment Rate (UR) as a response variable. The research results show that Life Expectancy and Minimum Wage at level 1 and GRDP at level 2 have a significant influence on district/city TPT on Java Island in 2022
References
Afifah, N., Romhadhoni, P. & Faizah. D. Z., 2018. Pengaruh Produk Domestik Regional Bruto (PDRB) Daerah terhadap Pertumbuhan Ekonomi dan Tingkat Pengangguran Terbuka di Provinsi DKI Jakarta. Jurnal Matematika Interaktif, Vol. 4, No. 2, 115–121. https://doi.org/10.24198/jmi.v14.n2.19262.113-120
Agresti, A., 2007. An Introduction to Categorical Data Analysis, Second Edition. John Wiley & Sons Inc., New Jersey.
Amalia, E. & Sari, L. Z., 2019. Analisis Spasial Untuk Mengidentifikasi Tingkat Pengangguran Terbuka Berdasarkan Kabupaten/Kota di Pulau Jawa Tahun 2017. Indonesian Journal of Statistics and Its Applications, Vol. 3, No. 3, 202–215. https://doi.org/10.29244/ijsa.v3i3.240.
Anggadini, F., 2015. Analisis Pengaruh Angka Harapan Hidup, Angka Melek Huruf, Tingkat Pengangguran Terbuka dan Pendapatan Domestik Regional Bruto Perkapita terhadap Kemiskinan Pada Kabupaten/ Kota Di Provinsi Sulawesi Tengah Tahun 2010-2013. Katalogis, Vol. 3, No. 7.
Aprilia, Z., Afendi, F. M. & Akbar, R., 2021. Penerapan Regresi Logistik Biner Multilevel terhadap Ketepatan Waktu Lulus Mahasiswa Program Magister Sekolah Pascasarjana IPB. Xplore: Journal of Statistic, Vol. 10, No. 2, 102–111. https://doi.org/10.29244/xplore.v10i2.199
BPS, 2022. Keadaan Ketenagakerjaan Indonesia Agustus 2022. BPS, Jakarta.
BPS, 2022. Tingkat Pengangguran Terbuka Menurut Provinsi (Persen). [diakses 2023 Des 10]. https://www.bps.go.id/id/statistics-table/2/NTQzIzI=/tingkat-pengangguran-terbuka--februari-2024.html.
Chikako, T. U. 2018. Multilevel Modelling of Determinants of Youth Unemployment in Urban Ethiopia: Bayesian Estimation Approach. International Journal on Data Science and Technology, Vol. 4, No. 67. https://doi.org/10.11648/j.ijdst.20180402.15.
Dodge, Y., 2008. Regression Analysis. In: The Concise Encyclopedia of Statistics. Springer, New York.
Fatmasari, Y., 2018. Pengaruh PDRB, Pendidikan, dan Pengangguran terhadap Kemiskinan di Jawa Timur Tahun 2006-2015. Jurnal Ilmiah Mahasiswa FEB, Vol. 6, No. 1.
Ghinastri, S. L. & Syafitri, W., 2024. Pengaruh Upah Minimum Kabupaten/Kota (MK) terhadap Tingkat Pengangguran Terbuka (TPT) dan Kemiskinan. Journal of Development Economic and Social Studies, Vol. 3, No. 1, 72–83. http://dx.doi.org/10.21776/jdess.2024.03.1.6
Goldstein, H., 1995. Multilevel Statistical Models, Second Edition. Arnold, London.
Hox, J. J., 2002. Multilevel Analysis: Techniques and Applications. Lawrence Erlbaum Associates Publishers, New Jersey.
Hosmer, D., Lemeshow. S. & Sturdivan, R., 2013. Applied Logistic Regression, Third Edition. John Wiley & Sons Inc., New York.
Mandasari, R., Indahwati, I. & Kurnia, A. 2018. Multilevel Panel Data Modelling for Unemployment Rate in Indonesian. International Journal of Sciences: Basic and Applied Research (IJSBAR), Vol. 40, No. 2, 99–108.
Muhdar, H. M., 2015. Potret Ketenagakerjaan, Pengangguran, dan Kemiskinan di Indonesia: Masalah dan Solusi. Jurnal Al-Buhuts, Vol. 11, No. 1, 42–66.
Pamungkas, P. A. & Suman, A., 2016. Pengaruh Upah Minimum terhadap Pengangguran dan Kemiskinan di Indonesia tahun 2011-2016. Jurnal Ilmiah Mahasiswa FEB, Vol. 5, No. 2.
Permata, R. P. & Ni’mah, R., 2023. Analisis Regresi Logistik Biner Multilevel pada Status Kemiskinan di Pulau Jawa menggunakan Algoritma MCMC Metropolis-Hasting. J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, Vol. 16, No. 1, 316–327. https://doi.org/10.36456/jstat.vol16.no1.a6578
Prahasta, K. F., Isnaniah, U. N., Nurlaily, D., Nurhayati, F. & Silfiani, M., 2023. Analisis Pengaruh Umur Harapan Hidup, Harapan Lama Sekolah, Rata-rata Lama Sekolah dan Tingkat Pengangguran Terbuka terhadap Indeks Pembangunan Manusia berdasarkan Kabupaten/Kota di Pulau Kalimantan Tahun 2022. Equiva, Vol 1, No. 2
Pramaysti, L. K., 2022. Perbandingan Analisis Regresi Logistik Biner dengan Analisis Deskriminan Pada Data tingkat Pengangguran Terbuka Provinsi Jawa Barat dan Jawa Tengan tahun 2020. Skripsi. Universitas Lampung, Lampung.
Romhadhoni, P., Faizah, D. Z. & Afifah, N., 2018. Pengaruh Produk Domestik Regional Bruto (PDRB) Daerah terhadap Pertumbuhan Ekonomi dan Tingkat Pengangguran Terbuka di Provinsi DKI Jakarta. Jurnal Matematika Integratif, Vol. 14, No. 2. 115–121. https://doi.org/10.24198/jmi.v14.n2.19262.113-120
Saragih, M. T., Inayah, A. W., Nooraeni, R., Aprilio, M., Sinsyi, M. M. & Aprilia, Y. R., 2020. Penerapan Regresi Logistik Biner Multilevel pada Partisipasi Angkatan Kerja di Provinsi Jawa Tengah Tahun 2018. Eigen Mathematics Journal, Vol. 3, No. 1, 35–44. https://doi.org/10.29303/emj.v3i1.60
Seyoum, T. F., Andualem, Z. & Yalew, H.F., 2023. Insecticide-treated bed net use and associated factors among households having under-five children in East Africa: a multilevel binary logistic regression analysis. Malar J, Vol. 22, No. 10. https://doi.org/10.1186/s12936-022-04416-y
Siskawati, N., Surya, R. Z. & Sudeska, E., 2021. Pengaruh Harapan Lama Sekolah, Rata – Rata Lama Sekolah Terhadap Tingkat Pengangguran Terbuka di Kabupaten / Kota Provinsi Riau. Selodang Mayang: Jurnal Ilmiah Badan Perencanaan Pembangunan Daerah Kabupaten Indragiri Hilir, Vol. 7, No. 3, 173–177. https://doi.org/10.47521/selodangmayang.v7i3.231
Snijders, T. A. B. & Bosker, R. J., 1999. Multilevel analysis: An introduction to basic and advanced multilevel modeling. Sage Publications, Thousand Oaks.
Zeru, N. G., Tolessa, D. B., Fufa, J. A. & Fufa, B. G., 2023. Multilevel logistic regression analysis of factors associated with delivery care service utilization among childbearing women in Ethiopia. Front. Reprod. Health, Vol. 5, No. 1045964. https://doi.org/10.3389/frph.2023.1045964
Zewude, B. T., Debusho, L. K. & Diriba T. A., 2022. Multilevel logistic regression modelling to quantify variation in malaria prevalence in Ethiopia. PLoS ONE, Vol. 17, No. 9: e0273147. https://doi.org/10.1371/journal.pone.0273147
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Jurnal Matematika, Statistika dan Komputasi
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.