Survival Analysis of Penile Cancer Patients Using Cox-Proportional Hazard and GPT-4
DOI:
https://doi.org/10.20956/j.v21i1.35774Keywords:
survival, analysis, cancer, gpt4, proportional, hazardAbstract
Today, in 2024, the evolution of the evolution of artificial intelligence (AI) is very impressive. An AI product that continues to develop is ChatGPT. The threat of ChatGPT to some job professions is real. Beside that, ChatGPT also helps many professions make their work easier. In this research, we analyze the survival analysis of penile cancer patients. The design of this research is mixed-method (quantitative-qualitative). The quantitative and qualitative methods that were used are Cox-proportional hazards and GPT-4, respectively. Based on quantitative analysis, it can be concluded that the Survival and Hazard model for study penile cancer are and , respectively. The predicted chances of survival and death for the patient in stage 2, 14 days after surgery, are 40% and 60%, respectively. Based on qualitative analysis, GPT-4 cannot quantitatively obtain the cox proportional hazard number. However, even so, GPT4 can read the cox proportional hazard output image, providing Python and R survival analysis coding quite perfectly. Thus, the qualitative method's conclusion is that GPT-4 can greatly assist data analysts in their analysis of survival data.
References
Abimayu, A.T. & Makful, M.R., 2023. Pengaruh komorbid terhadap tingkat survival pasien dengan diabetes tipe ii: analisis data sampel bpjs 2015-2021. Jurnal BIKFOKES.166-76. DOI: http://dx.doi.org/10.51181/bikfokes.v3i3.7124. available at: https://journal.fkm.ui.ac.id/bikfokes/article/view/7124
Collet, D., 1994. Modelling survival data in medical research. Chapman & Hall.
Dahlan, M.S., 2009. Analisis survival dasar-dasar teori dan aplikasi program stata. Jakarta: Sagung Seto.
Dewi, A.Y., Dwidayati, N.K. & Agoestanto, A., 2020. Analisis survival model regresi cox dengan metode MLE untuk penderita diabetes militus. UNNES Journal of Mathematics. 9(1):31-0. DOI 10.15294/UJM.V9I1.30559.
Evania, C.D. & Wiyanti, W., 2024. Perbandingan Metode Holt’s Linier dan GPT-4 Untuk Peramalan Jumlah Kasus Kematian Diabetes Militus Di Indonesia. Journal of Mathematics, Computation and Statistics, Vol. 7 No. 1 (2024): Volume 07 Nomor 01 (April 2024), 1-9. DOI: https://doi.org/10.35580/jmathcos.v7i1.2063
Farisyi, M.A. & Khambri, D., 2018. Analisis survival pasien kanker payudara usia muda di rsup dr m djamil padang tahun 2008-2017. Jurnal Kesehatan Andalas.(7):25-9. DOI: https://doi.org/10.25077/jka.v7i0.917.
https://arxiv.org/abs/2303.08774v3. https://doi.org/10.48550/arXiv.2303.08774
https://www.kaggle.com/datasets/antimoni/testicular-cancer (cited: 29 Desember 2023)
https://www.who.int/southeastasia/health-topics/adolescent-health (cited: 25 Mei 2024)
John W. & Creswell, 2009. Research desain: qualitative, quantitative and mixed methods approach. Third edition. New York: SAGE Publications, Inc.
Kleinbaum, D.G, Klein, M., 2005. Survival analysis a self-learning text-second edition. Second edition. Springer Science+Business Media, Inc.
Melantika, B.T.E. & Wiyanti, W., 2024. Perbandingan Box-Jenkin’s Method dan ChatGPT dalam Memprediksi Jumlah Kematian Penderita Tuberkulosis di Indonesia. Journal of Mathematics, Computation and Statistics, Vol. 7 No. 1 (2024): Volume 07 Nomor 01 (April 2024), 10-19. DOI: https://doi.org/10.35580/jmathcos.v7i1.1948
Mufarida, A. Saputra, N. Yuriska, R.T. & Liaunillah, Y., 2023. Analisis kurva survival kaplan meier menggunakan uji log rank pada pasien penyakit kanker serviks. IcoPSS.Volume2 issue 1,14-18. doi.org/10.24014/icopss.v2i1.25324
Pradana, A.N.I. & Sofro, A., 2019. Penerapan analisis survival pada pasien multiple myeloma. Jurnal Ilmiah Matematika.Volume 7 No.2:45-0. ISSN 2301-9115.
Wiyanti W, Siregar B., 2023. Comparison predictions of the demam berdarah dengue (dbd) using model exponential smoothing: pegel’s classification and chatgpt. Jurnal Matematika, Statistika dan Komputasi. 20(2),351-59. https://doi.org/10.20956/j.v20i2.32122.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Jurnal Matematika, Statistika dan Komputasi
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.