Estimating Conditional Value at Risk in Non-Cyclical Sector Companies Using the Extreme Value Theory Approach

Authors

  • Andi Muhammad Hakam Hasanuddin University
  • Andi Kresna Jaya Departemen Statistika, Universitas Hasanuddin

DOI:

https://doi.org/10.20956/j.v21i1.35849

Keywords:

L-Moment, Conditional Value at Risk, Generalized Extreme Value, Generalized Pareto Distirbution.

Abstract

Conditional Value at Risk (CVaR) is an estimate of the risk of loss that exceeds the Value at Risk (VaR) level. VaR is one of the most commonly used stock risk measurement methods to assess the risk of large investments. Extreme Value Theory (EVT) is a method used to analyze data that contains extreme values. The goal of EVT is to estimate the probability of an extreme event occurring by examining the tails of a distribution based on observed extreme values. There are two general distributions used in EVT, namely Generalized Extreme Value (GEV) and Generalized Pareto Distribution (GPD). This research aims to determine the estimated level of loss that investors may experience when investing in PT Hanjaya Mandala Sampoerna Tbk (HMSP) and PT Japfa Comfeed Indonesia Tbk (JPFA). The L-Moment method is applied to estimate the parameters in this distribution so that an explicit parameter form is obtained. Based on CVaR analysis using the Block Maxima (BM) approach, investors in HMSP and JPFA are estimated to experience losses of 20.0752% and 29.6537% respectively. Using the Peaks Over Threshold (POT) approach, the estimated losses are 0.966% and 1.548% for HMSP and JPFA, respectively. Based on CVaR calculations using both approaches, the POT approach with GPD provides a more accurate and reliable investment risk estimate than the BM approach with GEV distribution

References

Caraka, R.E., Yasin, H., & Prahutama, A., 2015. Pemodelan general regression neural network (grnn) pada data return indeks harga saham euro 50. Jurnal Gaussian, Vol. 4, No. 2, 181–192. doi:https://doi.org/10.14710/j.gauss.4.2

Christova, R., Satyahadewi, N., & Rizki, S.W., 2022. Analisis Value at Risk Pada Portofolio Saham Dengan Student T-Copula. Bimaster: Buletin Ilmiah Matematika, Statistika Dan Terapannya, Vol. 11, No. 3, 461–468. doi:http://dx.doi.org/10.26418/bbimst.v11i3.55429

Costanzino, N., & Curran, M., 2015. Backtesting general spectral risk measures with application to expected shortfall. The Journal of Risk Model Validation, Vol. 9, No. 1, 21–31. doi:10.21314/JRMV.2015.131

Dharmawan, K., 2012. Estimasi Nilai VaR Dinamis Indeks Saham Menggunakan Peak-Over Threshold dan Block Maxima. Jurnal Matematika, Vol. 2, No. 2. doi:https://doi.org/10.24843/JMAT.2012.v02.i02.p24.

Epriyanti, W., Yundari, Y., & Martha, S., 2022. PERHITUNGAN EXPECTED SHORTFALL PADA INVESTASI SAHAM DENGAN PENDEKATAN EKSPANSI CORNISH FISHER. Bimaster: Buletin Ilmiah Matematika, Statistika Dan Terapannya, Vol. 11, No. 4, 667–676. doi:http://dx.doi.org/10.26418/bbimst.v11i4.57772

Hartono, I.F., & Sutikno, S., 2021. Analisis Curah Hujan Ekstrem pada Kasus Elevasi Tinggi Air Muka Bendungan Bilibili Sulawesi Selatan dengan Pendekatan Peaks Over Threshold. Jurnal Sains Dan Seni ITS, Vol. 9, No. 2, D193–D199. doi:10.12962/j23373520.v9i2.57807

Hussain, F., Ali, Y., Li, Y., & Haque, M.M., 2024. Revisiting the hybrid approach of anomaly detection and extreme value theory for estimating pedestrian crashes using traffic conflicts obtained from artificial intelligence-based video analytics. Accident Analysis & Prevention, Vol. 199, 107517. doi:https://doi.org/10.1016/j.aap.2024.107517

Hu, X., Zhou, J., Yang, Y., Chen, Q., & Zhang, L., 2024. Assessing the collision risk of mixed lane-changing traffic in the urban inter-tunnel weaving section using extreme value theory. Accident Analysis & Prevention, Vol. 200, 107558. doi:https://doi.org/10.1016/j.aap.2024.107558

Kalsum, S.U., Gusri, L., & Dirnasari, R., 2021. Analisis Frekuensi Regional Hujan Harian Maksimum Wilayah Sungai Batanghari Menggunakan Metode L-Moment. Jurnal Civronlit Unbari, Vol. 6, No. 2, 85–92. doi:http://dx.doi.org/10.33087/civronlit.v6i2.89

Li, M., Wang, G., Cao, F., Zong, S., & Chai, X., 2023. Determining optimal probability distributions for gridded precipitation data based on L-moments. Science of The Total Environment, Vol. 882, 163528. doi:https://doi.org/10.1016/j.scitotenv.2023.163528

Mida, M., Rizki, S.W., & Perdana, H., 2020. ESTIMASI VALUE AT RISK DALAM INVESTASI PORTOFOLIO SAHAM MENGGUNAKAN METODE PEAK OVER THRESHOLD. Bimaster: Buletin Ilmiah Matematika, Statistika Dan Terapannya, Vol. 9, No. 3. doi:http://dx.doi.org/10.26418/bbimst.v9i3.41157

Najamuddin, F.F., Herdiani, E.T., & Jaya, A.K., 2024. VALUE AT RISK ESTIMATION USING EXTREME VALUE THEORY APPROACH IN INDONESIA STOCK EXCHANGE. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, Vol. 18, No. 2, 695–706. doi:https://doi.org/10.30598/barekengvol18iss2pp0695-0706

Ondja, T.N., Musdalifah, S., & Lusiyanti, D., 2021. Pengukuran Conditional Value At Risk (CVAR) Pada Aset Tunggal dengan Metode Simulasi Monte Carlo. Jurnal Ilmiah Matematika Dan Terapan, Vol. 18, No. 1, 130–135. doi:https://doi.org/10.22487/2540766X.2021.v18.i1.15524

Prayoga, I.S., & Ahdika, A., 2021. Pemodelan Kerugian Bencana Banjir Akibat Curah Hujan Ekstrem Menggunakan EVT dan Copula. Jurnal Aplikasi Statistika & Komputasi Statistik, Vol. 13, No. 1, 35–46. doi:https://doi.org/10.34123/jurnalasks.v13i1.273

Putri, G.A.M.A., Hendayanti, N.P.N., & Nurhidayati, M., 2017. Pemodelan Data Deret Waktu Dengan Autoregressive Integrated Moving Average Dan Logistic Smoothing Transition Autoregressive. Jurnal Varian, Vol. 1, No. 1, 54–63. doi:https://doi.org/10.30812/varian.v1i1.50

Rahmayani, D., & Sutikno, S., 2020. Analisis Curah Hujan Ekstrim Non-Stasioner dengan Pendekatan Block Maxima di Surabaya dan Mojokerto. Jurnal Sains Dan Seni ITS, Vol. 8, No. 2, D161–D168. doi:10.12962/j23373520.v8i2.44133

Rinaldi, A., 2016. Sebaran Generalized Extreme Value (GEV) dan Generalized Pareto (GP) untuk Pendugaan Curah Hujan Ekstrim di Wilayah DKI Jakarta. Al-Jabar: Jurnal Pendidikan Matematika, Vol. 7, No. 1, 75–84. doi:http://dx.doi.org/10.24042/ajpm.v7i1.137

Rohmah, S.M., & Suharsono, A., 2017. Estimasi Value at Risk dalam Investasi Saham Subsektor Perbankan di Bursa Efek Indonesia dengan Pendekatan Extreme Value Theory. Jurnal Sains Dan Seni ITS, Vol. 6, No. 2, D204–D209. doi:10.12962/j23373520.v6i2.24983

Sarykalin, S., Serraino, G., & Uryasev, S., 2008. Value-at-risk vs. conditional value-at-risk in risk management and optimization. State-of-the-Art Decision-Making Tools in the Information-Intensive Age, Informs, 270–294. doi:https://doi.org/10.1287/educ.1080.0052

Situmorang, R.E., Maruddani, D.A.I., & Santoso, R., 2019. Formation of stock portfolio using Markowitz method and measurement of Value at Risk based on generalized extreme value (Case study: company’s stock The IDX Top Ten Blue 2017, Period 2 January-29 December 2017). Journal of Physics: Conference Series (Vol. 1217), IOP Publishing. doi:10.1088/1742-6596/1217/1/012084

Tambunan, D., 2020. Investasi saham di masa pandemi COVID-19. Jurnal Khatulistiwa Informatika, Vol. 4, No. 2, 117–123. doi:https://doi.org/10.31294/widyacipta.v4i2.8564

Umami, A., & Sutikno, S., 2020. Perbandingan Estimasi Return Level Declustering dan Non Declustering pada Data Curah Hujan Ekstrem di Surabaya dan Mojokerto. Jurnal Sains Dan Seni ITS, Vol. 8, No. 2, D79–D87. doi:10.12962/j23373520.v8i2.44403

Unnikrishnan Nair, N., & Vineshkumar, B., 2022. Modelling informetric data using quantile functions. Journal of Informetrics, Vol. 16, No. 2, 101266. doi:https://doi.org/10.1016/j.joi.2022.101266

Zayed, M., Hidan, M., Abdalla, M., & Abul-Ez, M., 2020. Fractional order of Legendre-type matrix polynomials. Advances in Difference Equations, Vol. 2020, 1–13. doi:https://doi.org/10.1186/s13662-020-02975-5

Zou, Z., & Hu, T., 2024. Adjusted higher-order expected shortfall. Insurance: Mathematics and Economics, Vol. 115, 1–12. doi:https://doi.org/10.1016/j.insmatheco.2023.12.006

Downloads

Published

2024-09-15

Issue

Section

Research Articles

Most read articles by the same author(s)

1 2 > >>