Small Area Estimation for Percentage of Out-of-School Children Aged 7-17 Years in Sumatera Island, 2023

Authors

  • Wisly Ryanr Elieze Politeknik Statistika STIS
  • Aisyah 'Azizah Nur Rahmah Politeknik Statistika STIS
  • Karina Himalaya Politeknik Statistika STIS
  • Afidita Nabila Putri Politeknik Statistika STIS
  • Aditya Prameswara Achmadi Politeknik Statistika STIS
  • Azka Ubaidillah Politeknik Statistika STIS
  • Shafiyah Asy Syahidah Badan Pusat Statistik

DOI:

https://doi.org/10.20956/j.v21i1.36043

Keywords:

out-of-school children, small area estimation, hierarchical bayes beta

Abstract

Ensuring the quality of education is a fundamental commitment towards achieving sustainable development goals (SDGs). One effective strategy to enhance education quality is addressing the high number of children out of school. More precise district/city-level data on the percentage of out-of-school children needs to be provided. Estimation results from Susenas data show that Sumatra Island has the highest proportion of districts/cities with a Relative Standard Error (RSE) of over 25% compared to other islands in Indonesia. Therefore, this study applies Hierarchical Bayes (HB) Beta method by utilizing accompanying variables. The research reveals that the HB Beta estimator is the most effective in estimating the percentage of out-of-school children aged 7—17 years at the district/city level on Sumatra Island. The Small Area Estimation (SAE) model offers a more precise estimate than the direct estimator. Furthermore, there are 25 districts/cities with a high percentage of children aged 7—17 years who are not in school, with the majority located in the southern region of Sumatra Island

References

Australian Bureau of Statistics, 2021. Confidentiality and Relative Standard Error. https://www.abs.gov.au/statistics/microdata-tablebuilder/tablebuilder/confidentiality-and-relative-standard-error#cite-window2

Badan Pusat Statistik, 2024. Angka Anak Tidak Sekolah Menurut Jenjang Pendidikan dan Kelompok Pengeluaran, 2022-2023. https://www.bps.go.id/id/statistics-table/2/MTk4OCMy/angka-anak-tidak-sekolah-menurut-jenjang-pendidikan-dan-kelompok-pengeluaran.html

Bappenas. 2024a. Metadata Indikator SDGs. https://sdgs.bappenas.go.id/metadata-indikator-sdgs/

Bappenas, 2024b. Sustainable Development Goals 4 : Pendidikan Berkualitas. https://sdgs.bappenas.go.id/17-goals/goal-4/

Box, G., & Tiao, G. 1992. Bayesian Inference in Statistical Analysis. John Wiley & Sons Ltd. https://doi.org/10.1002/9781118033197

Eurostat, 2019. Guidelines on Small Area Estimation For City Statistics and other functional geographies. European Union.

Firmando, G., & Ubaidillah, A., 2021. Pendugaan Area Kecil Untuk Angka Partisipasi Kasar Pendidikan Dasar Dan Menengah Tingkat Kabupaten/Kota Di Provinsi Jawa Tengah Tahun 2018. Seminar Nasional Official Statistics, 2020(1), 651–661. https://doi.org/https://doi.org/10.34123/semnasoffstat.v2020i1.466

Gu, H., & Ozturk, U., 2016. Technology, enrollment gender gap and the impact of social norms in rural China. China Agricultural Economic Review, 8(2), 335–344. http://dx.doi.org/10.1108/ CAER-01-2016-0016

Hakim, A., 2020. Faktor Penyebab Anak Putus Sekolah. Jurnal Pendidikan, 21(2), 122–132. https://doi.org/10.33830/jp.v21i2.907.2020

Ikhsan, E., Ratu, N. Y., & Nurizza, W. A. 2019. Estimasi Small Area Estimation Angka Partisipasi Kasar Di Perguruan Tinggi Pulau Kalimantan Tahun 2018. Prosiding Seminar Nasional Matematika, Statistika Dan Aplikasinya, 1, 82–88. https://jurnal.fmipa.unmul.ac.id/index.php/SNMSA/article/view/530

Kiong, J. F., 2023. The Impact of Technology on Education: A Case Study of Schools. Journal of Education Review Provision, 2(2), 43–47. https://doi.org/10.55885/jerp.v2i2.153

Lanyasunya, R., Ngala, F. B. J. A., & Tikoko, B., 2023. Relationship between ecological, economic, conflict, socio-cultural factor and enrolment of girls in rural public primary schools in Samburu County, Kenya. Journal of Education and Learning, 2(1), 154–160. https://doi.org/10.51317/jel.v2i1.454

Liang, X., Kamata, A., & Li, J., 2020. Hierarchical Bayes Approach to Estimate the Treatment Effect for Randomized Controlled Trials. Educational and Psychological Measurement, 80(6), 1090–1114. https://doi.org/10.1177/0013164420909885

Liu, B., 2009. Hierarchical Bayes Estimation And Empirical Best Prediction Of Small Area Proportions [University of Maryland]. https://drum.lib.umd.edu/bitstream/handle/1903/9149/liu_umd_0117e_10245.pdf?sequence=1

Maghfirah, D. A., 2019. The Determinant Factors of Dop Out Students at High School/Vocational School Level in Mataram City. Jurnal Kebijakan Pendidikan, 8(3), 215–222. https://doi.org/10.21831/sakp.v8i3.15862

Malik, N. F. J., Hoyyi, A., & Ispriyanti, D., 2014. Pendugaan Angka Putus Sekolah Di Kabupaten Semarang Dengan Metode Prediksi Tak Bias Linier Terbaik Empirik Pada Model Pendugaan Area Kecil. Jurnal Gaussian, 3(2), 101–110. https://doi.org/10.14710/j.gauss.3.1.101 - 110

Muhardi, 2004. Kontribusi Pendidikan Dalam Meningkatkan Kualitas Bangsa Indonesia. MIMBAR : Jurnal Sosial Dan Pembangunan, XX(4), 478–492. https://doi.org/10.29313/mimbar.v20i4.153

Mukherjee, M., 2012. Do Better Roads Increase School Enrollment? Evidence from a Unique Road Policy in India. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2207761

Nations, U. 2023. UNESCO: 250 million children now out of school. https://news.un.org/en/story/2023/09/1140882

Noviani, A., 2016. Small Area Estimation dengan Pendekatan Hierarchical Bayesian Neural Network Untuk Kasus Anak Putus Sekolah dari Rumah Tangga Miskin di Provinsi Jawa Timur. Thesis. https://repository.its.ac.id/1470/

Nurjanah, S., 2024. Factors Affecting Gross Enrollment Rates in Higher Education in Indonesia. International Journal of Applied and Advanced Multidisciplinary Research, 2(3), 243–258. https://doi.org/10.59890/ijaamr.v2i3.1566

Putri, S. P. O., 2023. Pengaruh Bencana Alam Terhadap Putus Sekolah di Indonesia. EDUCATIONIST: Journal of Educational and Cultural Studies, 2(2), 79–93. https://jurnal.litnuspublisher.com/index.php/jecs/article/view/170

Rao, J. N. ., & Molina, I., 2015. Small Area Estimation. John Wiley & Sons Ltd.

Raya, U., 2021. Akses Pendidikan Dasar Bagi Semua Anak. https://sikompak.bappenas.go.id/pembelajaran/view/40/id/materi_belajar/Strategi Tata Kelola Penanganan Anak Tidak Sekolah di Wilayah Dukungan KOMPAK/download.pdf

Rudji, H., 2023. Analisis Kondisi Demografi, Ekonomi dan Lingkungan pada Anak Putus Sekolah di Kecamatan Banawa Kabupaten Donggala (Studi Kasus Jenjang Pendidikan Sekolah Menengah Pertama). Jurnal Kolaboratif Sains, 6(6), 519–526. https://doi.org/10.56338/jks.v6i6.3672

Soetrisnaadisendjaja, D., & Sari, N., 2019. Fenomena Anak Putus Sekolah di Kawasan Industri Kota Cilegon. Hermeneutika : Jurnal Hermeneutika, 5(2), 89. https://doi.org/10.30870/hermeneutika.v5i2.7383

Yamashita, T., Yamashita, K., & Kamimura, R., 2007. A stepwise AIC method for variable selection in linear regression. Communications in Statistics - Theory and Methods, 36(13), 2395–2403. https://doi.org/10.1080/03610920701215639

Zainuri, M., Matsum, J. H., & Thomas, Y., 2020. Tingkat Pendapatan, sosial, Budaya dan Jarak Rumah dengan Sekolah sebagai Faktor Penyebab Anak Putus Sekolah. Jurnal Pendidikan Dan Pembelajaran Khatulistiwa, 3(10), 1–15. https://jurnal.untan.ac.id/index.php/jpdpb/article/download/6812/7556

Zimmerman, F. J., 2001. Determinants of school enrollment and performance in Bulgaria: The role of income among the poor and rich. Contemporary Economic Policy, 19(1), 87–98. https://doi.org/10.1111/j.1465-7287.2001.tb00052.x

Downloads

Published

2024-09-15

Issue

Section

Research Articles