Classification of Unisba Students' Graduation Time using Support Vector Machine Optimized with Grid Search Algorithm

Authors

  • Ilham Faishal Mahdy Department of Statistics, Universitas Islam Bandung
  • Muthia Nadhira Faladiba 5Department of Statistics, Universitas Islam Bandung
  • Nur Azizah Komara Rifai Department of Statistics, Universitas Islam Bandung
  • Indah Siti Rahmawati Department of Statistics, Universitas Islam Bandung
  • Andhika Sidiq Firmansyah Department of Statistics, Universitas Islam Bandung

DOI:

https://doi.org/10.20956/j.v21i1.36257

Keywords:

Classification, Graduation Time, Grid Search, Optimization, Support Vector Machine

Abstract

Support Vector Machine is a classification method that finds the optimal hyperplane to separate two data classes. SVM has much better generalization performance than other methods. However, SVM needs to improve in determining hyperparameter values. Therefore, parameter optimization is necessary to determine the optimal hyperparameter value. Grid search is one of the parameter optimization methods that can improve the quality of SVM models. This study aims to assess the level of accuracy in predicting student graduation times by using five features that affect it. This study shows that the resulting SVM model optimized with the Grid Search Algorithm is quite consistent and prevents overfitting. By utilizing the results of SVM modelling, UNISBA is expected to improve the quality of graduates. The risk of delays in graduation can be considered early by paying attention to the background and achievements of students

References

Abe, S., 2010. Support Vector Machines for Pattern Classification (2nd ed.). Springer-Verlag. http://www.springer.com/series/4205

Agwil, W., Fransiska, H., & Hidayati, N., 2020. Analisis Ketepatan Waktu Lulus Mahasiswa Dengan Menggunakan Bagging Cart. FIBONACCI: Jurnal Pendidikan Matematika Dan Matematika, 6(2), 155. https://doi.org/10.24853/fbc.6.2.155-166

Ariani, N. K. D., Sumarjaya, I. W., & Oka, T. B., 2013. Analisis Faktor-Faktor Yang Memengaruhi Waktu Kelulusan Mahasiswa Dengan Menggunakan Metode Gompit (Studi Kasus: Mahasiswa Fakultas MIPA Universitas Udayana). E-Jurnal Matematika, 2(3), 40–45.

Bramer, M., 2007. Principles of Data Mining. Springer-Verlag.

Fatmawati, & Rifai, N. A. K., 2023. Klasifikasi Penyakit Diabetes Retinopati Menggunakan Support Vector Machine dengan Algoritma Grid Search Cross-validation. Jurnal Riset Statistika, 79–86. https://doi.org/10.29313/jrs.v3i1.1945

Fide, S., Suparti, & Sudarno, 2021. Analisis Sentimen Ulasan Aplikasi Tiktok di Google Play Menggunakan Support Vector Machine (SVM) dan Asosiasi. 10(3), 346–358. https://ejournal3.undip.ac.id/index.php/gaussian/

Gede, I., Sudipa, I., & Darmawiguna, M., 2024. Buku Ajar Data Mining. PT. Sonpedia Publishing Indonesia. https://www.researchgate.net/publication/377415198

Kervanci, I. S., Akay, M. F., & Özceylan, E., 2024. Bitcoin Price Prediction using LSTM, GRU And Hybrid LSTM-GRU with Bayesian Optimization, Random Search, and Grid Search for The Next Days. Journal of Industrial and Management Optimization, 20(2), 570–588. https://doi.org/10.3934/jimo.2023091

Kim, M. C., Lee, J. H., Wang, D. H., & Lee, I. S., 2023. Induction Motor Fault Diagnosis Using Support Vector Machine, Neural Networks, and Boosting Methods. Sensors, 23(5). https://doi.org/10.3390/s23052585

Kusumaningrum, A. P., 2017. Optimasi Parameter Supprort Vector Machine Menggunakan Genetic Algorithm Untuk Klasifikasi Microarray Data. Institut Teknologi Sepuluh Nopember.

Lin, S. W., Ying, K. C., Chen, S. C., & Lee, Z. J., 2008. Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications, 35(4), 1817–1824. https://doi.org/10.1016/j.eswa.2007.08.088

Martadinata, A. M., 2019. Peran Mahasiswa dalam Pembangunan Di Indonesia. IDEA : Jurnal Humaniora, 2(1), 1–12. https://doi.org/10.29313/idea.v0i0.4168

Rerung, R. R., 2018. Penerapan Data Mining dengan Memanfaatkan Metode Association Rule untuk Promosi Produk. Jurnal Teknologi Rekayasa, 3(1), 89. https://doi.org/10.31544/jtera.v3.i1.2018.89-98

Rustam, Z., & Audia Ariantari, N. P. A., 2018. Support Vector Machines for Classifying Policyholders Satisfactorily in Automobile Insurance. Journal of Physics: Conference Series, 1028(1). https://doi.org/10.1088/1742-6596/1028/1/012005

Schölkopf, B., & Smola, A. J., 2002. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Massachusetts Institute of Technology.

Shams, M. Y., Elshewey, A. M., El-kenawy, E. S. M., Ibrahim, A., Talaat, F. M., & Tarek, Z., 2024. Water quality prediction using machine learning models based on grid search method. Multimedia Tools and Applications, 83(12), 35307–35334. https://doi.org/10.1007/s11042-023-16737-4

Suhada, K., Elanda, A., & Aziz, A., 2021. Klasifikasi Predikat Tingkat Kelulusan Mahasiswa Program Studi Teknik Informatika dengan Menggunakan Algoritma C4.5 (Studi Kasus: STMIK Rosma Karawang). Dirgayama: Jurnal Manajemen Dan Sistem Informasi, 1(2), 14–27.

Trisnawati, N. K., & Astawa, I. G. S., 2023. Klasifikasi Penyakit Hepatitis C Menggunakan Algoritma Support Vector Machine. JNATIA, 1(4), 1215–1219.

Triyaningsih, S. L., & Triastity, R., 2015. Perbedaan Ketepatan Kelulusan Mahasiswa ditinjau dari Gender, Indeks Prestasi Kumulatif (IPK) dan Program Studi (Survei pada Mahasiswa Fakultas Ekonomi Unisri Surakarta Tahun Kelulusan Tahun 2012-2013). EKSPLORASI, 27(2).

Universitas Islam Bandung., 2022. Pedoman Akademik Universitas Islam Bandung Tahun Akademik 2022-2023.

Zeniarja, J., Salam, A., & Ma’ruf, F. A., 2022. Seleksi Fitur dan Perbandingan Algoritma Klasifikasi untuk Prediksi Kelulusan Mahasiswa. Jurnal Rekayasa Elektrika, 18(2), 102–108. https://doi.org/10.17529/jre.v18i2.24047

Downloads

Published

2024-09-15

Issue

Section

Research Articles