Doctor and Nurse Scheduling in Emergency Room Using Firefly Algorithm
DOI:
https://doi.org/10.20956/j.v21i1.36294Keywords:
Scheduling, Firefly Algorithm, Optimal, Optimization, RequestAbstract
The Emergency Room (ER) is a part of the hospital responsible for providing initial treatment to patients with life-threatening conditions. The operational hours of the ER follow the schedule set by the hospital. ER must be ready to serve emergency patients 24 hours a day and 7 days a week. Therefore, the scheduling of doctors and nurses in the ER needs to be well-managed to enhance the efficiency of doctors and nurses in responding emergency patients quickly and effectively.
In this study, the problem of doctors and nurses scheduling in the ER is solved using the Firefly Algorithm, in which doctors and nurses represented as fireflies. This algorithm is chosen since its ability to find optimal solutions for complex optimization problems. In this research, doctors and nurses can submit schedule requests to improve job satisfaction. The optimization model is constructed by a number of constraints including the availability of doctors and nurses, schedule requests, and the operational needs of the ER. The Firefly Algorithm is applied to find the optimal solution for the model. Simulation results show that this algorithm can produce an optimal schedule, in which 70.6% of doctors' schedule requests and 98.2% of nurses' schedule requests are being fulfilled.
References
Agustin, R., 2015. Penerapan Firefly Algorithm (FA) untuk Menyelesaikan Uncapacitated Facility Location Problem (UFLP). Skripsi: Universitas Airlangga, Surabaya.
Alridha, A., Salman, A.M., Al-Jilawi, A.S., 2021. The Applications of NP-Hardness Optimizations Problem. Journal of Physics: Conference Series. Vol. 1818. https://doi.org/10.1088/1742-6596/1818/1/012179
Budiono, W.A., Suprajitno, H., Miswanto, 2013. Penyelesaian Airline Crew Scheduling Problem Bikriteria Menggunakan Firefly Algorithm. Jurnal Matematika.
Dini Maulidah, S., 2021. Implementasi Teknik Column Generation pada Penyelesaian Masalah Penjadwalan Perawat. Skripsi: Universitas Pendidikan Indonesia, Bandung.
Duka, E., 2015e. Nurse Scheduling Problem. European Scientific Journal. Vol. 2, 53–63.
Er, M., Pranantha, D., Ulya, A., n.d. Penggunaan Algoritma Genetik dengan Pemodelan Dua Tingkat dalam Permasalahan Penjadwalan Perawat pada Unit Gawat Darurat Rumah Sakit Umum XYZ Surabaya. SISFO-Jurnal Sistem Informasi. 1–9.
Firdaus, A., Muklason, A., Supoyo, V.A., 2021. Perbandingan Metode Penyelesaian Permasalahan Optimasi Lintas Domain dengan Pendekatan Hyper-Heuristic Menggunakan Algoritma Reinforcement-Late Acceptance. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK). Vol. 8, 871–878. https://doi.org/10.25126/jtiik.2021853263
Islami, D.R., 2022. Optimasi Penjadwalan Dokter Dan Perawat Igd Menggunakan Algoritma Kunang-Kunang (Firefly Algorithm). Skripsi: Universitas Islam Negeri Maulana Malik Ibrahim, Malang.
Karmakar, S., Chakraborty, S., Chatterjee, T., Baidya, A., Acharyya, S., 2016. Meta-heuristics for Solving Nurse Scheduling Problem: A comparative Study. Proceedings - 2016 International Conference on Advances in Computing, Communication and Automation (Fall), ICACCA 2016. https://doi.org/10.1109/ICACCAF.2016.7748951
Kumar, V., Kumar, D., 2020. A Systematic Review on Firefly Algorithm: Past, Present, and Future. Computational Methods in Engineering. Vol. 28, 3269–3291. https://doi.org/10.1007/s11831-020-09498-y
Legrain, A., Bouarab, H., Lahrichi, N., 2015. The Nurse Scheduling Problem in Real-Life. Journal of Medical Systems. Vol. 39. https://doi.org/10.1007/s10916-014-0160-8
Mahariani, Y.R., 2022. Implementasi Firefly Algorithm Pada Penjadwalan Pasien Operasi. JIPI (Jurnal Ilmu Penelitian dan Pembelajaran Informatika). Vol. 7, 602–607. https://doi.org/10.29100/jipi.v7i2.1671
Mashhour, E.M., El Houby, E.M.F., Wassif, K.T., Salah, A.I., 2020. A Novel Classifier Based on Firefly Algorithm. Journal of King Saud University. - Computer and Information Sciences. Vol. 32, 1173–1181. https://doi.org/10.1016/j.jksuci.2018.11.009
Nurlina, D., Rifai, A., Jamaluddin, J., 2019. Faktor-Faktor Yang Memengaruhi Kepuasan Pasien Instalasi Gawat Darurat Rumah Sakit TNI AD Tk Iv 02.07.04 Bandar Lampung Tahun 2017. Jurnal Ilmu Kesehatan Masyarakat. Vol. 8, 78–88. https://doi.org/10.33221/jikm.v8i03.299
Pordella, R., 2018. Optimasi Penjadwalan Staf Rumah Sakit dengan Menggunakan Metode Late-Acceptance Hill Climbing Hyper-Heuristic (Studi Kasus: RSIA Kendangsari Surabaya). Tugas Akhir: Institut Teknologi Sepuluh November, Surabaya.
Ramadhani, I.A., Rizal, Y., 2023. Optimasi Penjadwalan Perawat IGD RSUD Arosuka dengan Metode 0-1 Fuzzy Goal Programming. Journal of Mathematics UNP. Vol. 8, 81. https://doi.org/10.24036/unpjomath.v8i2.14441
Udaiyakumar, K.C., Chandrasekaran, M., 2014. Application of Firefly Algorithm in Job Shop Scheduling Problem for Minimization of Makespan. Procedia Engineering. Vol. 97, 1798–1807. https://doi.org/10.1016/j.proeng.2014.12.333
Yang, X.S., 2014. Cuckoo Search and Firefly Algorithm: Overview and Analysis. Studies in Computational Intelligence. 1-26. https://doi.org/10.1007/978-3-319-02141-6
Yang, X.S., 2010. Nature-Inspired Metaheurisctic Second Edition. Luniver Press, United Kingdom.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Matematika, Statistika dan Komputasi
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.