IDENTIFIKASI SENYAWA KIMIA POTENSIAL BERKHASIAT OBAT DARI KULIT BATANG Shorea ovalis (Korth.) Blume MENGGUNAKAN ANALISIS GAS KROMATOGRAFI

Authors

  • Novitri Hastuti Pusat Litbang Hasil Hutan (Forest Products Research and Development Center), Badan Litbang dan Inovasi Kementerian Lingkungan Hidup dan Kehutanan http://orcid.org/0000-0002-3921-7894
  • Marfuah Wardani Pusat Litbang Hutan, Badan Litbang dan Inovasi, Kementerian Lingkungan Hidup dan Kehutanan

Keywords:

Shorea, meranti, fitokimia, ekstrak, kromatografi

Abstract

Shorea spp. adalah jenis-jenis tanaman hutan yang populer dan menjadi primadona dari suku Dipterocarpaceae dengan nama perdagangan meranti. Beberapa jenis meranti masuk dalam kategori terancam punah dan masuk daftar merah International Union on Conservation of Nature (IUCN). Salah satu jenis yang masuk dalam daftar merah IUCN adalah Shorea ovalis (Korth) Blume. Untuk mendorong konservasi jenis S.ovalis, maka penelitian potensi hasil non kayu perlu dilakukan. Hal ini dimaksudkan untuk mendorong masyarakat agar mendukung upaya pelestarian jenis S.ovalis. Kulit batang S.ovalis berpotensi sebagai bahan obat. Studi ini bertujuan untuk mengetahui potensi senyawa kimia yang terkandung dalam kulit batang S.ovalis menggunakan analisis kromatografi. Sampel kulit batang S.ovalis dari 5 pohon diuji kandungan fitokimianya dan dianalisis senyawa kimianya menggunakan GCMS Pyrolisis. Hasil uji fitokimia menunjukkan bahwa kulit batang S.ovalis mengandung senyawa fenol, triterpena dan alkaloid. Senyawa fenol mendominasi ekstrak kulit batang S.ovalis. Analisis GCMS menunjukkan senyawa 2-methoxy-4-methylphenol terkandung pada seluruh kulit batang S.ovalis yang dianalisis dengan konsentrasi berkisar 4-5%.

References

Ashton P. Dipterocarpaceae. In: Flora Malesiana 1. 9th ed. 1982. p. 548.

International Union for Conservation of Nature. The IUCN red list of threatened species. Switzerland; 2012.

Soerianegera I, Lemmens R. Plant resources of South-East Asia 5(1) timber trees: major commercial timbers. 5 (1). bogor: Prosea; 1994.

Rosyidah K, Juliawaty L, Syah Y, Hakim E, Achmad S, Makmur L, et al. Trimer resveratrol dari kulit batang Shorea parvifolia Dyer. Sains dan Terap Kim. 2007;1(1):47–52.

Sahidin, Hakim E, Syah Y, Juliawaty L, Achmad S, Lajis N. Oligomer resveratrol dari kulit batang Shorea assamica Dyer (Dipterocarpaceae) dan sitotoksitasnya. J Mat dan Sains. 2007;12(3):113–8.

Noviany E, Hakim S, Achmad E, Hakm L, Juliawaty N, Aimi Ghisalberti E. Vatikanol G. suatu trimer stilbenoid dari tumbuhan Shorea multiflora Burck. J Mat dan Sains. 2003;8(2):87–91.

Aminah N, Achmad S, Hakim E, Juliawaty L, Aimi Ghisalberti E, Syah Y. Beberapa senyawa oligostilbenoid dari kulit batang Shorea seminis. BullSocNatProdChem. 2004;4:67–70.

Haryoto, Syah Y, Juliawaty L, Achmad S, Latip J, Hakim E. Senyawa ologomer resveratrol dari kulit batang Shorea brunnescens (Dipterocarpaceae). J Mat dan Sains. 2006;11(3):89–94.

Saroyobudiyono H, Aisyah S. Suatu senyawa trimer resveratrol dari kulit batang Shorea platyclados sloot (Dipterocarpacea). J Penelit Sains Teknol. 2006;7(1):11–6.

He S, Yan X. From resveratrol to its derivatives: new sources of natural antioxidant. Curr Med Chem. 2013;20(4):1–13.

Syah Y, Hakim E, Ghisalberti E, Jayuska A, Mujahidin D, Achmad S. A modified oligostilbenoid, diptoindonesin C, from Shorea pinanga Scheff. Nat Prod Res. 2009;23(7):591–4.

Guo Z, Cheng Y, Huang W, Jiao R. Fitoterapia Shoreanol A and B , unprecedented oligostilbenoids from the twigs of Shorea obtusa Wall. Fitoterapia [Internet]. 2020;142:104502. Available from: https://doi.org/10.1016/j.fitote.2020.104502

Morikawa T, Chaipech S, Matsuda H, Hamao M, Umeda Y, Sato H, et al. Bioorganic & Medicinal Chemistry dihydroisocoumarins from the bark of Shorea roxburghii. Bioorg Med Chem [Internet]. 2012;20:832–40. Available from: http://dx.doi.org/10.1016/j.bmc.2011.11.067

Subramanian R, Raj V, Manigandan K, Elangovan N. Antioxidant activity of hopeaphenol isolated from Shorea roxburghii stem bark extract. J Taibah Univ Sci [Internet]. 2015;9:237–44. Available from: http://dx.doi.org/10.1016/j.jtusci.2014.11.004

Ito T, Nishiya K, Oyama M, Tanaka T, Murata J, Darnaedi D, et al. Novel isolation of resveratrol dimer O-glucosides with enantiomeric aglycones from the leaves of Shorea cordifolia. Phytochem Lett [Internet]. 2013;6:667–70. Available from: http://dx.doi.org/10.1016/j.phytol.2013.08.001

Huang H, Liu J, Liu H, Evrendilek F, Buyukada M. Pyrolysis of water hyacinth biomass parts: Bioenergy, gas emissions, and by-products using TG-FTIR and Py-GC / MS analyses. Energy Convers Manag [Internet]. 2020;207:112552. Available from: https://doi.org/10.1016/j.enconman.2020.112552

Basu P. Chapter 14. Analytical Techniques. In: Biomass Gasification, Pyrolysis and Torrefaction, Practical Design and Theory. 3rd ed. Elsevier; 2018. p. 479–95.

Kusch P. Application of Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). In: Rocha-Santos D, editor. Characterization and Analysis of Microplastics Comprehensive Analytical Chemistry, Vol 75. Amsterdam: Elsevier; 2016.

Lembaga Penelitian Tanah. Peta tanah tinjau Provinsi Lampung Skala 1:250.000. 1966.

Syafitri N, Bintang M, Falah S. Kandungan fitokimia, total fenol, dan total flavonoid ekstrak buah harendong (Melastoma affine D.Don). Curr Biochem. 2014;1(3):105–15.

Pasaribu G, Gusmailina, Komarayati S. Pemanfaatan minyak Dryobalanops aromatica sebagai bahan pewangi alami. J Penelit Has Hutan. 2014;32(3):235–42.

Pasaribu G, Waluyo TK, Pari G. Keragaman komponen kimia gaharu pada kelas super dan kemedangan. J Penelit Has Hutan. 2015;33(3):247–52.

Monteiro JM, Souza JSN De, Neto EMFL, Scopel K, Trindade EF. Original article Does total tannin content explain the use value of spontaneous medicinal plants from the Brazilian semi-arid region ? Rev Bras Farmacogn [Internet]. 2014;24(2):116–23. Available from: http://dx.doi.org/10.1016/j.bjp.2014.02.001

Lavola A, Maukonen M, Julkunen-tiitto R. Phytochemistry Variability in the composition of phenolic compounds in winter-dormant Salix pyrolifolia in relation to plant part and age. Phytochemistry [Internet]. 2018;153(November 2017):102–10. Available from: https://doi.org/10.1016/j.phytochem.2018.05.021

Ge L, Li S, Lisak G. Advanced sensing technologies of phenolic compounds for pharmaceutical and biomedical analysis. J Pharm Biomed Anal [Internet]. 2019;(article in press):112913. Available from: https://doi.org/10.1016/j.jpba.2019.112913

Bouimeja B, Yetongnon KH, Touloun O, Berrougui H, Laaradia MA, Ouanaimi F. South African Journal of Botany Studies on antivenom activity of Lactuca serriola methanolic extract against Buthus atlantis scorpion venom by in vivo methods. South African J Bot [Internet]. 2019;125:270–9. Available from: https://doi.org/10.1016/j.sajb.2019.07.044

Kumar N, Goel N. Phenolic acids : Natural versatile molecules with promising therapeutic applications. Biotechnol Reports [Internet]. 2019;24:e00370. Available from: https://doi.org/10.1016/j.btre.2019.e00370

Balasundram N. Food Chemistry Phenolic compounds in plants and agri-industrial by-products : Antioxidant activity , occurrence , and potential uses. 2006;99:191–203.

Hardiana R, Rudiansyah, Zaharah T. aktivitas antioksidan senyawa golongan fenol dari beberapa jenis tumbuhan famili Malvaceae. J Kebidanan dan Keperawatan. 2012;1(1):8–13.

The Merck Index. The Merck Index: An encyclopedia of chemical, drugs and biologicals. 13th ed. O’Neil M, Smith A, Heckelmen P, Obenchain J, Gallipaeu J, D’Arreca M, et al., editors. Whitehouse Station, NJ, USA; 2001.

Mateen S, Rehman MT, Shahzad S, Naeem SS, Faizy AF, Khan AQ, et al. Anti-oxidant and anti-inflammatory effects of cinnamaldehyde and eugenol on mononuclear cells of rheumatoid arthritis patients. Eur J Pharmacol [Internet]. 2019;852(February):14–24. Available from: https://doi.org/10.1016/j.ejphar.2019.02.031

Xu F, Huang X, Wu H, Wang X. Biomedicine & Pharmacotherapy Bene fi cial health e ff ects of lupenone triterpene : A review. 2018;103(April):198–203.

Rauter A, Branco I, Lopes R, Justino J, Silva F, Noronha J, et al. A new lupene triterpenetriol and anticholinasterase activity of Salvia sclareoides. Fitoterapia. 2007;78:474–81.

Ismarti. Isolasi triterpenoid dan uji antioksidan dari fraksi etil asetat kulit batang meranti merah (Shorea singkawang (Miq.)Miq.) [Internet]. Bengkulu; 2011. Available from: http://pasca.unand.ac.id/id/wp-content/uploads/2011/09/artikel-ismarti-oke.pdf

Hooland J Van, De Clerco P, Vandewalle M. Cyclopentanones.XI. A Novel Preparation of A Prostanoid Synthon Starting from a 3-alkyl-1,2,4-Cyclopentanetrione. Tetrahedron Lett. 1974;49–50:4343–6.

Baker SJC, Kraak G Van Der. General and comparative endocrinology investigating the role of prostaglandin receptor isoform EP4b in zebra fi sh ovulation. Gen Comp Endocrinol [Internet]. 2019;283(July):113228. Available from: https://doi.org/10.1016/j.ygcen.2019.113228

Lagoja I. Review: pyrimidine as constituent of natural biologically active compounds. Chem Biodivers. 2005;2:1–50.

Sroor FM, Basyouni WM, Tohamy WM, Abdelhafez TH, El-awady MK. Novel pyrrolo [2,3-d] pyrimidine derivatives: Design, synthesis, structure elucidation and in vitro anti-BVDV activity. Tetrahedron [Internet]. 2019;(Article in Press):130749. Available from: https://doi.org/10.1016/j.tet.2019.130749

Bhattarai H, Saikawa E, Wan X, Zhu H, Ram K, Gao S. Levoglucosan as a tracer of biomass burning : Recent progress and perspectives. Atmos Res [Internet]. 2019;220(January):20–33. Available from: https://doi.org/10.1016/j.atmosres.2019.01.004

Lee H, Chang C, Lai M, Chuang H, Kuo C, Chang C, et al. Antimitotic and antivascular activity of heteroaroyl-2-hydroxy-3,4,5- trimethoxybenzenes. Bioorg Med Chem [Internet]. 2015;23(15):4230–6. Available from: http://dx.doi.org/10.1016/j.bmc.2015.06.043

Downloads

Published

2020-12-31

Issue

Section

Articles