EVALUASI EFEK INKORPORASI KOMBINASI DOPAN Mg2+ DAN Fe3+ TERHADAP KARAKTERISTIK OPTIK DAN STRUKTUR NANOPLATFORM TERANOSTIK ZnO

Authors

  • Achmad Himawan Fakultas Farmasi, Universitas Hasanuddin, Makassar
  • Vidya Amaliatul Jannah Yusuf Fakultas Farmasi, Universitas Hasanuddin, Makassar
  • Tifanny Dewi Wijaya Fakultas Farmasi, Universitas Hasanuddin, Makassar
  • Andi Arjuna Fakultas Farmasi, Universitas Hasanuddin, Makassar
  • Abdur Rahman Arif Departemen Kimia, Fakultas MIPA, Universitas Hasanuddin, Makassar
  • Nur Hasanah Departemen Fisika, Fakultas MIPA, Universitas Hasanuddin, Makassar

Abstract

Nanopartikel Zink Oksid (ZnO-NP) merupakan suatu material yang dapat digunakan sebagai nanoplatform dalam sistem penghantaran obat sekaligus pencitraan biologis karena karakteristiknya yang unik. Penelitian ini bertujuan untuk mensintesis serta mengevaluasi pengaruh inkorporasi dua dopant (co-doping) magnesium (Mg2+) dan besi (III) (Fe3+) terhadap karakteristik optik dan struktur dari ZnO-NP. ZnO-NP (tanpa dopan, dengan dopan tunggal dan dengan dopan kombinasi) disintesis lewat jalur kimiawi dengan menggunakan metode ko-presipitasi sederhana. Larutan Zink Klorida dalam air digunakan sebagai material awal dan diendapkan dengan menambahkan Natrium Hidroksia dengan perbandingan molar 1:2. Sampel dikarakterisasi dengan menggunakan spektrofotometer UV-Visible dan Powder X-Ray Diffractometer (P-XRD). Hasil analisis sifat optik menunjukkan serapan maksimum sampel berada pada kisaran 361- 367 nm dan kalkulasi nilai bandgap berdasarkan data serapan tersebut berada pada rentang 3,09-3,23 eV. Difraktogram sampel menunjukkan sampel yang terbentuk adalah ZnO-NP dengan struktur kristal hexagonal wurtzite. Dari data difraktogram yang diperoleh, besar ukuran butir diestimasi dengan beberapa persamaan dan diketahui rentang diameter kristal berada pada kisaran 17,25 hingga 27,74 nm. Dari hasil penelitian ini dapat ditarik kesimpulan bahwa inkorporasi dopan Mg2+/Fe3+ mempengaruhi karakteristik ZnO-NP. Perubahan karakterisik ini dapat mempengaruhi performa nanomaterial ini sebagai agen teranostik.

References

Jokerst, J.V dan Gambhir, S.S. Molecular Imaging with Theranostic Nanoparticles. Accounts Of Chemical Research. 2011;44(10):1050–1060. DOI: 10.1021/ar200106e

Carmona , M.M., Gun’ko, Y., Regí, M.V. Review : ZnO Nanostructures for Drug Delivery and Theranostic Applications. Nanomaterials. 2018;8(268): 1-27. DOI:10.3390/nano8040268

Sawyer, S., Qin, L., Shing, C. Zinc Oxide Nanoparticles For Ultraviolet Photodetection. International Journal of High Speed Electronics and Systems. 2011;20(1):183–194. DOI:10.1142/S0129156411006519

Jiang, J., Pi, J., dan Cai, J. Review Article : The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorganic Chemistry and Applications. 2018;Volume 2018: 1-18. DOI:https://doi.org/10.1155/2018/1062562

Zhang, L., Yin, L., Wang, C., lun, N., Qi, Y., Xiang, D. Origin of Visible Photoluminescence of ZnO Quantum Dots: Defect-Dependent and Size-Dependent. J. Phys. Chem. C. 2010;114:9651–9658. DOI:10.1021/jp101324a

Ma, Y., Choi, T.W., Cheung, S.H., Cheng, Y. Xu, X., Xie, Y.M., Li, H.W., Li,M., Luo, H., Zhang, W., So, S.K., Chen, S., Tsang, S.W. Charge Transfer Induced Photoluminescence in ZnO Nanoparticles. The Royal Society of Chemistry. 2013. DOI: 10.1039/x0xx00000x

Md, T. Doped Zinc Oxide Nanostructures for Photovoltaic Solar Cells Application. Zinc Oxide Based Nano Materials and Devices. 2019. DOI: http://dx.doi.org/10.5772/intechopen.86254

Ghosh, M., Dilawar, N., Bandyopadhyay, A.K., Raychaudhuri, A.K. Phonon dynamics of Zn(Mg,Cd)O alloy nanostructures and their phase segregation. Journal Of Applied Physics. 2009;106. DOI:10.1063/1.3243341

Xu, Q., Zhang. X.W., Fan, W.J., Li, S.S., Xia, J.B. Electronic structures of wurtzite ZnO, BeO, MgO and p-type doping in Zn1-xYxO (Y = Mg, Be). Computational Materials Science. 2008;44:72–78. DOI:10.1016/j.commatsci.2008.01.030

Viswanatha, R., Nayaka, Y.A., Vidyasagar, C.C., Venkatesh, T.G. Structural and optical properties of Mg doped ZnO nanoparticles. Journal of Chemical and Pharmaceutical Research. 2012;4(4):1983-1989. Available from: www.jocpr.com

Abdissa, Y., Siraj, K., Selale, G. Effect of Mg2+, Ca2+ and Sr2+ Ions Doping on the Band Gap Energy of ZnO Nanoparticle. Juniper Online Journal Material Science. 2018;3(4):1-6. DOI:10.19080/JOJMS.2018.03.555620

Etacheri, V., Roshan, R., Kumar, V. Mg-Doped ZnO Nanoparticles for Efficient Sunlight-Driven Photocatalysis. ACS Appl. Mater. Interfaces. 2012. DOI: dx.doi.org/10.1021/am300359h

Abed, C., Bouzidi, C., Elhouichet, H., Gelloz, B., Ferid, M. Mg doping induced high structural quality of solgel ZnO nanocrystals: application in photocatalysis. Applied Surface Science. 2015:1-19. DOI:http://dx.doi.org/doi:10.1016/j.apsusc.2015.05.078

Fabbiyola, S., Kennedy, L.J., Ratnaji, T., Vijaya, J.J., Aruldoss, U., Bououdina, M. Effect Of Fe-doping on the Structural, Optical and Magnetic Properties of Zno Nanostructures Synthesised By Co-precipitation Method. Ceramics International. 2016;42:1588–1596. DOI: 10.1016/j.ceramint.2015.09.110

Habba, Y.G., Gnambodoe, M.C., Wang, Y.L. Enhanced Photocatalytic Activity of Iron-Doped ZnO Nanowires for Water Purification. Appl. Sci. 2017;7(1185):1-10. DOI:10.3390/app7111185

Xia, C., Hu, C., Tian, Y.T., Chen, P., Wan, B., Xu, J. Room-temperature ferromagnetic properties of Fe-doped ZnO rod arrays. Solid State Sciences. 2011;13: 388-393. DOI:10.1016/j.solidstatesciences.2010.11.041

Srinivasulu, T., Saritha, K., Ramakrishna, K.T., Reddy. Synthesis and Characterization of Fe-doped ZnO Thin Films Deposited by Chemical Spray Pyrolysis. Modern Electronic Materials. 2017. DOI: http://dx.doi.org/10.1016/j.moem.2017.07.001

Samanta, P.K., Saha, A., dan Kamilya, T. Chemical Synthesis and Optical Properties of ZnO Nanoparticles. Journal of Nanoscience Nano- and Electronic Physics. 2014;6(4):1-2.

Chaki, S.H., Malek, T.K., Chaudhary, M.D., Tailor, J.P., Deshpande, M.P. Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2015;6:1-6. DOI:10.1088/2043-6262/6/3/035009

Sumadiyasa, M., and Manuaba, I.B.S. Penentuan Ukuran Kristal Menggunakan Formula Scherrer, Williamson-Hull Plot, dan Ukuran Partikel dengan SEM. Buletin Fisika Udayana. 2018;19(1):28-34

Kahouli, M., Barhoumi, A., Bouzid, A., Al-Hajry, A., dan Guermazi, S. Review : Structural and Optical Properties of ZnO Nanoparticles Prepared by Direct Precipitation Method. Superlattices and Microstructures. 2015;85:7–23. DOI:10.1016/j.spmi.2015.05.007

Zak, A. K., Majid, W. H. A., Abrishami, M. E., Yousefi, R., dan Parvizi, R. Synthesis, Magnetic Properties, and X-ray Analysis of Zn0.97X0.03O Nanoparticles (X = Mn, Ni, and Co) Using Scherrer and Size-Strain Plot Methods. Solid States Sciences. 2012;14:488-494. DOI: 10.1016/j.solidstatesciences.2012.01.019

Prabhu, Y.T., Rao, K.V., Kumar, V.S.S. and Kumari, B.S. X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation. World Journal of Nano Science and Engineering. 2014;4:21-28. DOI:org/10.4236/wjnse.2014.41004

Sahai, A. dan Goswami, N. Structural and Vibrational Properties of ZnO Nanoparticles Synthesized by Chemical Precipitation Method. Physica E. 2013. DOI:http://dx.doi.org/10.1016/j.physe.2013.12.009

Yadav, H., Sinha, N., Goel, S., dan Kumar, B.. Eu-Doped ZnO Nanoparticles for Dielectric, Ferroelectric, and Piezoelectric Application. Journal of Alloys and Compounds. 2016. DOI:10.1016/j.jallcom. 2016.07.329

Ullah, Z., Atiq, S., and Naseem, S. Indexing the Diffraction Patterns and Investigating the Crystal Structure of Pb-doped Strontium Ferrites. Journal of Scientific Research. 2012:5(2):235-244. DOI:http://dx.doi.org/10.3329/jsr.v5i2.11578

Thool, G. S., Singh, A.K., Singh, R. S., Gupta, A., dan Susan, M. A. B. H. Facile Synthesis of Flat Crystal ZnO Thin Films by Solution Growth Method : A Micro-structural Investigation. Journal of Saudi Chemical Society. 2014. DOI:http://dx.doi.org/10.1016/j.jscs.2014.02.005

Hassan, M. M., Khan, W., Azam, A., dan Naqvi, A. H. Effect of Size Reduction on Structural and Optical Properties of ZnO Matrix due to Successive Doping of Fe Ions. Journal of Luminescence. 2014;145:160-166. DOI:http://dx.doi.org/10.1016/j.jlumin.2013.06.024

Benerjee, G. K. Electrical and Electronics Engineering Materials. Delhi : PHI Learning Private Limited; 2015

Kanchana, S., Chithra, M. J., Ernest, S., dan Pushpanathan, K. Violet Emission from Fe Doped ZnO Nanoparticles Synthesized by Precipitation Method. Journal of Luminescene. 2015. DOI:org/10.1016/j.jlumin.2015.12.047

Raj, K.P., Sadaiyandi, K., Kennedy, K., Sagadevan, S., Chowdhury, Z.Z., Johan, M.R.B., Aziz, F.A., Rafique, R.F., Selvi, R.T., Bala, R.R. Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis. Nanoscale Research Letters. 2018;13(229):1-13. DOI:https://doi.org/10.1186/s11671-018-2643-x

Peveler, W.J., Jaber S.B., Parkin, I.P. Nanoparticles in explosives detection–the state-of-the-art and future directions. Forensic Sci Med Pathol. 2017;13:490–494. DOI:10.1007/s12024-017-9903-4

Kumar, D.S., Kumar, B.J., Mahesh, H.M. Chapter 3 Quantum Nanostructures (QDs): An Overview. Synthesis of Inorganic Nanomaterials. 2018. DOI: https://doi.org/10.1016/B978-0-08-101975-7.00003-8

Zamiri, R., Singh, B., Bdikin, I., Rebelo, A., Belsley, M.S., Ferreira, J.M.F. Influence of Mg doping on dielectric and optical propertiesof ZnO nano-plates prepared by wet chemical method. Solid State Communications. 2014;195:74–79.

DOI:http://dx.doi.org/10.1016/j.ssc. 2014.07.011

Ciciliati, M.A., Silva, M.F., Fernandes, D.M., Melo, M.A.C.d., Hechenleitner, A.A.W., Pineda, E.A.G. Fe-doped ZnO nanoparticles: Synthesis by a modified sol–gel method and characterization. Materials Letters. 2015;159: 84-86. DOI:10.1016/j.matlet.2015.06.023

Singhal, R., Fernando, M., LeMaire, P.K., Wu, B. Characterization of ZnO and Fe doped ZnO nanoparticles using fluorescence spectroscopy. Oxide-based Materials and Devices X. 2019;Vol 10919:1-10. DOI:10.1117/12.2510983

Moussa, D., Bakeer, D.E.S., Awad, R., Gaber. A.M.A. Physical properties of ZnO nanoparticles doped with Mn and Fe. Journal of Physics: Conf. Series. 2017;869:1-4. DOI:10.1088/1742-6596/869/1/012021

Jimenez, J.J.B., Barrero, C.A., Punnoose, A.. Evidence of Ferromagnetic Signal Enhancement in Fe and Co Co-Doped ZnO Nanoparticles by Increasing Superficial Co3+ Content. J. Phys. Chem. C. 2014. DOI:10.1021/jp501933k

Rai, P dan Yu, Y.T. Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application. Sensors and Actuators B. 2012; 173:58–65. DOI:http://dx.doi.org/10.1016/j.snb.2012.05.068

Tao, S., Yang, M., Chen, H., Ren, M., Chen, G. Continuous synthesis of hedgehog-like Ag–ZnO nanoparticles in a two-stage microfluidic system. RSC advances. 2016;6:45503–45511. DOI:10.1039/c6ra06101j

Khorrami ,G.H., Zak, A.K., Kompany, A., Yousefi, R. Optical and structural properties of X-doped (X = Mn, Mg, and Zn) PZT nanoparticles by Kramers–Kronig and size strain plot methods. Ceramics International. 2012;38:5683–5690. DOI:doi.org/10.1016/j.ceramint.2012.04.012

Ivetic, T.B., Dimitrievska, M.R., Fincur, N.L., Dacanin, L.R., Guth, I.O., Abramovic, B.F., Petrovic, S.R.L. Effect of annealing temperature on structural and optical properties of Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam degradation. Ceramics International. 2013;1-8. DOI:http://dx.doi.org/10.1016/j.ceramint.2013.07.041

Jeyasubramaniana, K., Hikkua, G.S., Sharma. R.K. Photo-catalytic degradation of methyl violet dye using zinc oxidenano particles prepared by a novel precipitation method and its anti-bacterial activities. Journal of Water Process Engineering. 2015;8:35–44. DOI: http://dx.doi.org/10.1016/j.jwpe.2015.08.007

Bindu, P and Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis . J Theor Appl Phys. 2014;8:126-129. DOI: 10.1007/s40094-014-0141-9

Downloads

Published

2020-02-16

Issue

Section

Articles