EVALUASI EFEK INKORPORASI KOMBINASI DOPAN Mg2+ DAN Fe3+ TERHADAP KARAKTERISTIK OPTIK DAN STRUKTUR NANOPLATFORM TERANOSTIK ZnO
Abstract
Nanopartikel Zink Oksid (ZnO-NP) merupakan suatu material yang dapat digunakan sebagai nanoplatform dalam sistem penghantaran obat sekaligus pencitraan biologis karena karakteristiknya yang unik. Penelitian ini bertujuan untuk mensintesis serta mengevaluasi pengaruh inkorporasi dua dopant (co-doping) magnesium (Mg2+) dan besi (III) (Fe3+) terhadap karakteristik optik dan struktur dari ZnO-NP. ZnO-NP (tanpa dopan, dengan dopan tunggal dan dengan dopan kombinasi) disintesis lewat jalur kimiawi dengan menggunakan metode ko-presipitasi sederhana. Larutan Zink Klorida dalam air digunakan sebagai material awal dan diendapkan dengan menambahkan Natrium Hidroksia dengan perbandingan molar 1:2. Sampel dikarakterisasi dengan menggunakan spektrofotometer UV-Visible dan Powder X-Ray Diffractometer (P-XRD). Hasil analisis sifat optik menunjukkan serapan maksimum sampel berada pada kisaran 361- 367 nm dan kalkulasi nilai bandgap berdasarkan data serapan tersebut berada pada rentang 3,09-3,23 eV. Difraktogram sampel menunjukkan sampel yang terbentuk adalah ZnO-NP dengan struktur kristal hexagonal wurtzite. Dari data difraktogram yang diperoleh, besar ukuran butir diestimasi dengan beberapa persamaan dan diketahui rentang diameter kristal berada pada kisaran 17,25 hingga 27,74 nm. Dari hasil penelitian ini dapat ditarik kesimpulan bahwa inkorporasi dopan Mg2+/Fe3+ mempengaruhi karakteristik ZnO-NP. Perubahan karakterisik ini dapat mempengaruhi performa nanomaterial ini sebagai agen teranostik.
References
Jokerst, J.V dan Gambhir, S.S. Molecular Imaging with Theranostic Nanoparticles. Accounts Of Chemical Research. 2011;44(10):1050–1060. DOI: 10.1021/ar200106e
Carmona , M.M., Gun’ko, Y., Regí, M.V. Review : ZnO Nanostructures for Drug Delivery and Theranostic Applications. Nanomaterials. 2018;8(268): 1-27. DOI:10.3390/nano8040268
Sawyer, S., Qin, L., Shing, C. Zinc Oxide Nanoparticles For Ultraviolet Photodetection. International Journal of High Speed Electronics and Systems. 2011;20(1):183–194. DOI:10.1142/S0129156411006519
Jiang, J., Pi, J., dan Cai, J. Review Article : The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorganic Chemistry and Applications. 2018;Volume 2018: 1-18. DOI:https://doi.org/10.1155/2018/1062562
Zhang, L., Yin, L., Wang, C., lun, N., Qi, Y., Xiang, D. Origin of Visible Photoluminescence of ZnO Quantum Dots: Defect-Dependent and Size-Dependent. J. Phys. Chem. C. 2010;114:9651–9658. DOI:10.1021/jp101324a
Ma, Y., Choi, T.W., Cheung, S.H., Cheng, Y. Xu, X., Xie, Y.M., Li, H.W., Li,M., Luo, H., Zhang, W., So, S.K., Chen, S., Tsang, S.W. Charge Transfer Induced Photoluminescence in ZnO Nanoparticles. The Royal Society of Chemistry. 2013. DOI: 10.1039/x0xx00000x
Md, T. Doped Zinc Oxide Nanostructures for Photovoltaic Solar Cells Application. Zinc Oxide Based Nano Materials and Devices. 2019. DOI: http://dx.doi.org/10.5772/intechopen.86254
Ghosh, M., Dilawar, N., Bandyopadhyay, A.K., Raychaudhuri, A.K. Phonon dynamics of Zn(Mg,Cd)O alloy nanostructures and their phase segregation. Journal Of Applied Physics. 2009;106. DOI:10.1063/1.3243341
Xu, Q., Zhang. X.W., Fan, W.J., Li, S.S., Xia, J.B. Electronic structures of wurtzite ZnO, BeO, MgO and p-type doping in Zn1-xYxO (Y = Mg, Be). Computational Materials Science. 2008;44:72–78. DOI:10.1016/j.commatsci.2008.01.030
Viswanatha, R., Nayaka, Y.A., Vidyasagar, C.C., Venkatesh, T.G. Structural and optical properties of Mg doped ZnO nanoparticles. Journal of Chemical and Pharmaceutical Research. 2012;4(4):1983-1989. Available from: www.jocpr.com
Abdissa, Y., Siraj, K., Selale, G. Effect of Mg2+, Ca2+ and Sr2+ Ions Doping on the Band Gap Energy of ZnO Nanoparticle. Juniper Online Journal Material Science. 2018;3(4):1-6. DOI:10.19080/JOJMS.2018.03.555620
Etacheri, V., Roshan, R., Kumar, V. Mg-Doped ZnO Nanoparticles for Efficient Sunlight-Driven Photocatalysis. ACS Appl. Mater. Interfaces. 2012. DOI: dx.doi.org/10.1021/am300359h
Abed, C., Bouzidi, C., Elhouichet, H., Gelloz, B., Ferid, M. Mg doping induced high structural quality of solgel ZnO nanocrystals: application in photocatalysis. Applied Surface Science. 2015:1-19. DOI:http://dx.doi.org/doi:10.1016/j.apsusc.2015.05.078
Fabbiyola, S., Kennedy, L.J., Ratnaji, T., Vijaya, J.J., Aruldoss, U., Bououdina, M. Effect Of Fe-doping on the Structural, Optical and Magnetic Properties of Zno Nanostructures Synthesised By Co-precipitation Method. Ceramics International. 2016;42:1588–1596. DOI: 10.1016/j.ceramint.2015.09.110
Habba, Y.G., Gnambodoe, M.C., Wang, Y.L. Enhanced Photocatalytic Activity of Iron-Doped ZnO Nanowires for Water Purification. Appl. Sci. 2017;7(1185):1-10. DOI:10.3390/app7111185
Xia, C., Hu, C., Tian, Y.T., Chen, P., Wan, B., Xu, J. Room-temperature ferromagnetic properties of Fe-doped ZnO rod arrays. Solid State Sciences. 2011;13: 388-393. DOI:10.1016/j.solidstatesciences.2010.11.041
Srinivasulu, T., Saritha, K., Ramakrishna, K.T., Reddy. Synthesis and Characterization of Fe-doped ZnO Thin Films Deposited by Chemical Spray Pyrolysis. Modern Electronic Materials. 2017. DOI: http://dx.doi.org/10.1016/j.moem.2017.07.001
Samanta, P.K., Saha, A., dan Kamilya, T. Chemical Synthesis and Optical Properties of ZnO Nanoparticles. Journal of Nanoscience Nano- and Electronic Physics. 2014;6(4):1-2.
Chaki, S.H., Malek, T.K., Chaudhary, M.D., Tailor, J.P., Deshpande, M.P. Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2015;6:1-6. DOI:10.1088/2043-6262/6/3/035009
Sumadiyasa, M., and Manuaba, I.B.S. Penentuan Ukuran Kristal Menggunakan Formula Scherrer, Williamson-Hull Plot, dan Ukuran Partikel dengan SEM. Buletin Fisika Udayana. 2018;19(1):28-34
Kahouli, M., Barhoumi, A., Bouzid, A., Al-Hajry, A., dan Guermazi, S. Review : Structural and Optical Properties of ZnO Nanoparticles Prepared by Direct Precipitation Method. Superlattices and Microstructures. 2015;85:7–23. DOI:10.1016/j.spmi.2015.05.007
Zak, A. K., Majid, W. H. A., Abrishami, M. E., Yousefi, R., dan Parvizi, R. Synthesis, Magnetic Properties, and X-ray Analysis of Zn0.97X0.03O Nanoparticles (X = Mn, Ni, and Co) Using Scherrer and Size-Strain Plot Methods. Solid States Sciences. 2012;14:488-494. DOI: 10.1016/j.solidstatesciences.2012.01.019
Prabhu, Y.T., Rao, K.V., Kumar, V.S.S. and Kumari, B.S. X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation. World Journal of Nano Science and Engineering. 2014;4:21-28. DOI:org/10.4236/wjnse.2014.41004
Sahai, A. dan Goswami, N. Structural and Vibrational Properties of ZnO Nanoparticles Synthesized by Chemical Precipitation Method. Physica E. 2013. DOI:http://dx.doi.org/10.1016/j.physe.2013.12.009
Yadav, H., Sinha, N., Goel, S., dan Kumar, B.. Eu-Doped ZnO Nanoparticles for Dielectric, Ferroelectric, and Piezoelectric Application. Journal of Alloys and Compounds. 2016. DOI:10.1016/j.jallcom. 2016.07.329
Ullah, Z., Atiq, S., and Naseem, S. Indexing the Diffraction Patterns and Investigating the Crystal Structure of Pb-doped Strontium Ferrites. Journal of Scientific Research. 2012:5(2):235-244. DOI:http://dx.doi.org/10.3329/jsr.v5i2.11578
Thool, G. S., Singh, A.K., Singh, R. S., Gupta, A., dan Susan, M. A. B. H. Facile Synthesis of Flat Crystal ZnO Thin Films by Solution Growth Method : A Micro-structural Investigation. Journal of Saudi Chemical Society. 2014. DOI:http://dx.doi.org/10.1016/j.jscs.2014.02.005
Hassan, M. M., Khan, W., Azam, A., dan Naqvi, A. H. Effect of Size Reduction on Structural and Optical Properties of ZnO Matrix due to Successive Doping of Fe Ions. Journal of Luminescence. 2014;145:160-166. DOI:http://dx.doi.org/10.1016/j.jlumin.2013.06.024
Benerjee, G. K. Electrical and Electronics Engineering Materials. Delhi : PHI Learning Private Limited; 2015
Kanchana, S., Chithra, M. J., Ernest, S., dan Pushpanathan, K. Violet Emission from Fe Doped ZnO Nanoparticles Synthesized by Precipitation Method. Journal of Luminescene. 2015. DOI:org/10.1016/j.jlumin.2015.12.047
Raj, K.P., Sadaiyandi, K., Kennedy, K., Sagadevan, S., Chowdhury, Z.Z., Johan, M.R.B., Aziz, F.A., Rafique, R.F., Selvi, R.T., Bala, R.R. Influence of Mg Doping on ZnO Nanoparticles for Enhanced Photocatalytic Evaluation and Antibacterial Analysis. Nanoscale Research Letters. 2018;13(229):1-13. DOI:https://doi.org/10.1186/s11671-018-2643-x
Peveler, W.J., Jaber S.B., Parkin, I.P. Nanoparticles in explosives detection–the state-of-the-art and future directions. Forensic Sci Med Pathol. 2017;13:490–494. DOI:10.1007/s12024-017-9903-4
Kumar, D.S., Kumar, B.J., Mahesh, H.M. Chapter 3 Quantum Nanostructures (QDs): An Overview. Synthesis of Inorganic Nanomaterials. 2018. DOI: https://doi.org/10.1016/B978-0-08-101975-7.00003-8
Zamiri, R., Singh, B., Bdikin, I., Rebelo, A., Belsley, M.S., Ferreira, J.M.F. Influence of Mg doping on dielectric and optical propertiesof ZnO nano-plates prepared by wet chemical method. Solid State Communications. 2014;195:74–79.
DOI:http://dx.doi.org/10.1016/j.ssc. 2014.07.011
Ciciliati, M.A., Silva, M.F., Fernandes, D.M., Melo, M.A.C.d., Hechenleitner, A.A.W., Pineda, E.A.G. Fe-doped ZnO nanoparticles: Synthesis by a modified sol–gel method and characterization. Materials Letters. 2015;159: 84-86. DOI:10.1016/j.matlet.2015.06.023
Singhal, R., Fernando, M., LeMaire, P.K., Wu, B. Characterization of ZnO and Fe doped ZnO nanoparticles using fluorescence spectroscopy. Oxide-based Materials and Devices X. 2019;Vol 10919:1-10. DOI:10.1117/12.2510983
Moussa, D., Bakeer, D.E.S., Awad, R., Gaber. A.M.A. Physical properties of ZnO nanoparticles doped with Mn and Fe. Journal of Physics: Conf. Series. 2017;869:1-4. DOI:10.1088/1742-6596/869/1/012021
Jimenez, J.J.B., Barrero, C.A., Punnoose, A.. Evidence of Ferromagnetic Signal Enhancement in Fe and Co Co-Doped ZnO Nanoparticles by Increasing Superficial Co3+ Content. J. Phys. Chem. C. 2014. DOI:10.1021/jp501933k
Rai, P dan Yu, Y.T. Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application. Sensors and Actuators B. 2012; 173:58–65. DOI:http://dx.doi.org/10.1016/j.snb.2012.05.068
Tao, S., Yang, M., Chen, H., Ren, M., Chen, G. Continuous synthesis of hedgehog-like Ag–ZnO nanoparticles in a two-stage microfluidic system. RSC advances. 2016;6:45503–45511. DOI:10.1039/c6ra06101j
Khorrami ,G.H., Zak, A.K., Kompany, A., Yousefi, R. Optical and structural properties of X-doped (X = Mn, Mg, and Zn) PZT nanoparticles by Kramers–Kronig and size strain plot methods. Ceramics International. 2012;38:5683–5690. DOI:doi.org/10.1016/j.ceramint.2012.04.012
Ivetic, T.B., Dimitrievska, M.R., Fincur, N.L., Dacanin, L.R., Guth, I.O., Abramovic, B.F., Petrovic, S.R.L. Effect of annealing temperature on structural and optical properties of Mg-doped ZnO nanoparticles and their photocatalytic efficiency in alprazolam degradation. Ceramics International. 2013;1-8. DOI:http://dx.doi.org/10.1016/j.ceramint.2013.07.041
Jeyasubramaniana, K., Hikkua, G.S., Sharma. R.K. Photo-catalytic degradation of methyl violet dye using zinc oxidenano particles prepared by a novel precipitation method and its anti-bacterial activities. Journal of Water Process Engineering. 2015;8:35–44. DOI: http://dx.doi.org/10.1016/j.jwpe.2015.08.007
Bindu, P and Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis . J Theor Appl Phys. 2014;8:126-129. DOI: 10.1007/s40094-014-0141-9
Downloads
Published
Issue
Section
License
The copyright to this article is transferred to Universitas Hasanuddin (UNHAS) if and when the article is accepted for publication. The undersigned hereby transfers all rights in and to the paper including without limitation all copyrights to UNHAS. The undersigned hereby represents and warrants that the paper is original and that he/she is the author of the paper, except for material that is clearly identified as to its original source, with permission notices from the copyright owners where required. The undersigned represents that he/she has the power and authority to make and execute this assignment.
We declare that:
- This paper has not been published in the same form elsewhere.
- It will not be submitted anywhere else for publication prior to acceptance/rejection by this Journal.
- A copyright permission is obtained for materials published elsewhere and which require this permission for reproduction.
Furthermore, I/We hereby transfer the unlimited rights of publication of the above-mentioned paper in whole to UNHAS The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.
The corresponding author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. This agreement is to be signed by at least one of the authors who have obtained the assent of the co-author(s) where applicable. After submission of this agreement signed by the corresponding author, changes of authorship or in the order of the authors listed will not be accepted.