Extreme Rainfall Analysis Of The West Papua Province Using Schlather’s Model Of Max Stable Process
DOI:
https://doi.org/10.20956/j.v20i1.27433Keywords:
Spatial Extreme Value, Max Stable Process, Schlather's ModelAbstract
Data from Badan Pusat Statistik (BPS) in 2021 notes the province of West Papua as the province with the 5th highest rainfall in Indonesia with a rainfall of 3,811 mm. The province also recorded 268 rainy days, the most amongst all provinces in the country. The excess amount of rain is one of the causes of disasters such as floods. This research uses rainfall data from the Regencies of Manokwari, Fakfak, and Kaimana. The method used is Spatial Extreme Value particularly Schlather's Model of the Max Stable Process. The data used is hourly rainfall for the period of 13 March 2022 to 17 October 2022 with the proportion of training and testing data respectively 85.84% and 14.16%. Extreme data collection was carried out using the Block Maxima method with a fitting to the Generalized Extreme Value (GEV) distribution before being transformed into the Frechet Z margin units. The calculation of the extreme coefficient resulted in a value between 1.4 to 1.85, indicating a relationship between the locations. Next, the best trend surface model was determined, which involves latitude coordinates for the calculation of the location parameter and both longitude and latitude coordinates for the calculation of the scale parameter. The spatial parameter estimation is carried using the powered exponential correlation function. Then, model validation was carried out using MAPE based on a comparison of return levels and testing data. The MAPE values obtained was 22.61% for the BFGS iteration method. The final step is to calculate return levels for periods of 2, 4, 6, 8, and 10 years ahead. All the results were categorized under very heavy rain. These results can be used by related parties to carry out disaster mitigation efforts.
References
CNN Indonesia, 2022. Curah Hujan Tahunan 2022 Diprediksi Lebih Tinggi Dari Rata-Rata. CNN Indonesia, Jakarta. https://www.cnnindonesia.com/teknologi/20220111024724-199-744961/curah-hujan-tahunan-2022-diprediksi-lebih-tinggi-dari-rata-rata. [2 Februari 2023]
Agustina, L., Syawreta, A., dan Irawan, A. M., 2020. Analisis Ambang Batas Hujan Untuk Pengembangan Peringatan Dini Tanah Longsor(Studi Kasus Kecamatan Pejawaran, Kabupaten Banjarnegara, Provinsi Jawa Tengah). Jurnal Dialog Penanggulangan Bencana, vol. 11, no. 1, pp. 75–81.
BNPB, 2021. INDEKS RISIKO BENCANA INDONESIA. Indonesia: Pusat Data, Informasi dan Komunikasi Kebencanaan Badan Nasional Penanggulangan Bencana.
Han, X., Mehrotra, R., dan Sharma, A., 2020. Measuring the Spatial Connectivity of Extreme Rainfall. J Hydrol (Amst), vol. 590 p. 125510, doi: 10.1016/J.JHYDROL.2020.125510.
Yasin, H., Warsito, B., dan Hakim, A. R., 2019. PREDIKSI CURAH HUJAN EKSTREM DI KOTA SEMARANG MENGGUNAKAN SPATIAL EXTREME VALUE DENGAN PENDEKATAN MAX STABLE PROCESS (MSP). MEDIA STATISTIKA, vol. 12, no. 1, pp. 39–49, doi: 10.14710/medstat.12.1.39-49.
Gobin, A. dan Van de Vyver, H., 2021. Spatio-Temporal Variability of Dry and Wet Spells and Their Influence on Crop Yields. Agric For Meteorol, vol. 308–309, doi: 10.1016/j.agrformet.2021.108565.
Lee, Y., Yoon, S., Murshed, M., Kim, M., Cho, C., Baek, H., Park, J., 2013. Spatial Modeling of the Highest Daily Maximum Temperature in Korea via Max-Stable Processes. Adv Atmos Sci, vol. 30, no. 6, pp. 1608–1620, doi: 10.1007/s00376-013-2216-y.
NASA, 2023. Prediction Of Worldwide Energy Resource. NASA, Houston. https://power.larc.nasa.gov/data-access-viewer/. [9 Februari 2023]
Agung, M. P., Soeryana, E., and Sukono, F., 2020. Estimasi Potensi Klaim Maksimal Dalam Risiko Kerugian Kebakaran Rumah Dengan Metode Extreme Value Theory (EVT) Di Kota Bandung. KUBIK: Jurnal Publikasi Ilmiah Matematika, vol. 5, no. 2, pp. 108–117.
Kotz, S. and Nadarajah, S., 2001. Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2001.
Gilli, M. dan Këllezi, E., 2006. An Application of Extreme Value Theory for Measuring Financial Risk. Comput Econ, vol. 27, no. 2–3, pp. 207–228, doi: 10.1007/s10614-006-9025-7.
Azizah, S., 2016. Estimasi Parameter Model Smith Pada-Stable Process Spatial Extreme Value (Studi Kasus : Pemodelan Curah Hujan Ekstrem Di Kabupaten Ngawi). ITS Repository, Surabaya. https://repository.its.ac.id/2548/ [5 Februari 2023]
Sholichah, I., Kuswanto, H., dan Sutijo, B., 2015. STUDI SIMULASI PARAMETER DISTRIBUSI GENERALIZED EXTREME VALUE (GEV) DENGAN PENDEKATAN L-MOMENTS DAN MLE. Prosiding Simposium Nasional Inovasi dan Pembelajaran Sains (SNIPS), pp. 177–180.
Schlather, M., 2002. Models for Stationary Max-Stable Random Fields. Extremes, vol. 5, pp. 33-44.
Ribatet, M., 2009. A User’s Guide to the SpatialExtremes Package. Switzerland: École Polytechnique Fédérale de Lausanne, 2009.
Hakim, A. R. 2016. Pemodelan Spatial Extreme Value dengan Pendekatan Max-Stable Process (Studi Kasus: Pemodelan Curah Hujan Ekstrem di Kabupaten Ngawi). ITS Repository, Surabaya. http://repository.its.ac.id/75290. [5 Februari 2023]
Ramadani, I. R. 2015. Spatial Extreme Value Modeling dengan Max-Stable Processes Model Smith dan Brown-Resnick. ITS Repository, Surabaya. http://repository.its.ac.id/41635. [5 Februari 2023]
Hatanti, Y. D. 2016. Perbandingan Model Smith, Schlather, Brown-Resnick dan Geometric Gaussian pada Pemodelan Curah Hujan (Studi Kasus: Curah Hujan Ekstrem di Kabupaten Lamongan). ITS Repository, Surabaya. http://repository.its.ac.id/id/eprint/41654. [5 Februari 2023]
Hussain, F., Nabi, G., and Boota, M. W., 2015. RAINFALL TREND ANALYSIS BY USING THE MANN-KENDALL TEST & SEN’S SLOPE ESTIMATES: A CASE STUDY OF DISTRICT CHAKWAL RAIN GAUGE, BARANI AREA, NORTHERN PUNJAB PROVINCE, PAKISTAN. Sci.Int.(Lahore), vol. 27, no. 4, pp. 3159–3165, [Online]. Available: https://www.researchgate.net/publication/330824269
Wang, F., Shao, W., Yu, H., Kan, G., He, X., Zhang, D., Ren, M., dan Wang, G., 2020. Re-Evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front Earth Sci (Lausanne), vol. 8, doi: 10.3389/feart.2020.00014.
Sumari, A. D. W., Musthafa, M. B., Ngatmari, dan Putra, D. R. H., 2020. Perbandingan Kinerja Metode-Metode Prediksi Pada Transaksi Dompet Digital Di Masa Pandemi. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 4, pp. 642–647.
Gu, X., Ye, L., Xin, Q., Zhang, C., Zeng, F., Nerantzaki, S., dan Papalexiou, S., 2022. Extreme Precipitation in China: A Review on Statistical Methods and Applications. Adv Water Resour, vol. 163 p. 104144, doi: 10.1016/J.ADVWATRES.2022.104144.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Author and publisher
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.