Penentuan Daerah Kritis Terbaik dengan Teorema Neyman- Pearson
DOI:
https://doi.org/10.20956/jmsk.v6i1.4092Abstract
Terdapat beberapa metode untuk membangun uji statistik yang baik, diantaranya adalah Teorema Neyman Pearson yang diawali dengan menguji hipotesis sederhana H0 melawan hipotesis alternatif H1. Sebelum kita mendefinisikan suatu uji terbaik, suatu observasi harus dibuat. Tentu uji tersebut menetapkan suatu daerah kritis, atau dengan kata lain suatu pilihan atas suatu daerah kritis menggambarkan suatu ujiReferences
Dudewicz, E.J., Mishra, S.N., 1988, Modern Mathematical Statistics, John Wiley & Sons, Ltd. Inc.
Hogg, R.V. dan Craig, A.T., 1995, Introduction to Mathematical Statistics, Fifth Edition, Prentice Hall.
Bain, L.J. dan Engelhardt, M., 1992, Introduction to Probability and Mathematical Statistics, Second Edition, Duxbury Press, An Imprint of Wadsworth Publishing Company Belmont, California.
Casella, G. dan & Berger, R.L., 1990, Statistical Inference, Wadsworth Inc., Belmont, California.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.