Partition Dimension of Complete Multipartite Graph

Authors

  • Safriadi Safriadi SMA Negeri 12 Makassar
  • Hasmawati Hasmawati Universitas Hasanuddin
  • Loeky Haryanto Universitas Hasanuddin

DOI:

https://doi.org/10.20956/jmsk.v16i3.7278

Keywords:

multipartite graph, complete multipartite, partition set, resolving partition, partition dimension

Abstract

Determining a resolving partition of a graph is an interesting study in graph theory due to many applications like censor design, compound classification in chemistry, robotic navigation and internet network. Let  and , the distance between  an  is . For an ordered partition  of , the representation of  with respect to  is . The partition  is called a resolving partition of  if all representation of vertices are distinct. The partition dimension of graph  is the smallest integer  such that  has a resolving partition with  element.

In this thesis, we determine the partition dimension of complete multipartite graph  ,  which is limited by , with  and . We found that , , and , .

References

Chartrand, G., Salehi, E. dan Zhang, P. 2000. The partition dimension of a graph. Aequationes Mathematicae.

Chartrand, G.,. dan Zhang, P. Salehi, E. 1998. On the partition dimension of a graph. Congressus Numerantium.

Fehr, M., Gosselin, S. Dan Oellermann, O. 2006. The partition dimension of Cayley digraphs. Aequationes Mathematicae.

Garey, M. dan Johnson, D. 1979. Computers and Intractability: A Guide to the Theory of NP-completeness, W.H. Freeman: California.

Gross, J.L. dan Yellen, J. 2004. Hand Book of Graph Theory. CRC Press LLC: Florida

Hasmawati. 2007. Bilangan Ramsey Untuk Graf Gabungan Bintang. Disertasi tidak diterbitkan. Bandung : Program Pascasarjana ITB.

Javaid, I. Dan Shokat, S. 2008. On the partition dimension of some wheel related graphs. Journal of prime Research in Mathematics.

Lipschutz dan Lipson. 2002. Matematika diskrit. Salemaba teknika: jakarta.

Melter, R. Dan Tomescu, I. 1984. Metric bases in digital geometri. Computer vision Graphics and image Processing.

Tomescu, I. 2008. Discrepancies between metric dimension and partition dimension of a connected graph, Discrete Mathematics.

Tomescu, I., Javaid, I. dan Slamin. 2007. On the partition dimension and connected partition dimension of wheels. Ars Combinatoria.

Downloads

Published

2020-04-28

Issue

Section

Research Articles