Workforce Classification in West Java 2018 With Random Forest
DOI:
https://doi.org/10.20956/jmsk.v17i2.11680Keywords:
pengangguran, random forest, machine learning, angkatan kerjaAbstract
Pengangguran di Indonesia merupakan masalah yang serius. Tingginya angka pengangguran di Indonesia tersebut dikarenakan jumlah lapangan kerja yang tersedia tidak sebanding dengan jumlah angkatan kerja yang terus meningkat. Berdasarkan data BPS, Provinsi Jawa Barat sebagai penyumbang terbesar jumlah pengangguran di indonesia, dengan angka tingkat pengangguran terbuka sebesar 8,52 persen. Tujuan penelitian ini untuk melakukan klasifikasi penduduk angkatan kerja kedalam kelompok berstatus pengangguran atau bukan pengangguran (bekerja) di Provinsi Jawa Barat tahun 2018 dengan metode random forest menggunakan pendekatan machine learning. Model random forest ini dibentuk dengan 80 persen dari data total atau sebanyak 16.059 data untuk data training dan 20 persen dari data total atau sebanyak 4.015 data untuk data testing. Penelitian ini menggunakan data Sakernas 2018 dan terdapat tujuh variabel yang digunakan dalam penelitian, yaitu klasifikasi wilayah, jenis kelamin, umur, status perkawinan, tingkat pendidikan, pelatihan, dan pengalaman kerja. Dalam model random forest yang terbentuk, variabel status pernikahan dan tingkat pendidikan seseorang memiliki kontribusi besar dalam menentukan status pengangguran.
References
Aryati, F. & Sunaryanto, H., 2014. Analisis Pengangguran Terdidik di Provinsi Bengkulu. Jurnal Ekonomi dan Perencaan Pembangunan (JEPP), 05(04), 70 - 79.
Badan Pusat Statistik. 2020. Tingkat Pengangguran Terbuka Menurut Provinsi Tahun 1986 – 2020. Badan Pusat Statistik
Bappenas. 2017. Evalusai Paruh Waktu RPJMN 2015 – 2019. Bappenas.
Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J., 1984. Classification and Regression Trees. Chapman & Hall.
Breiman, L., 2001. Random Forests. Machine Learning, 45:5-32.
Cahyono, & Kahar, S., 2019. Menguak Fakta Tingginya Pengangguran di Jawa Barat. Koran Perdjoeangan, Jakarta. https://www.koranperdjoeangan.com/menguak-fakta-tingginya-pengangguran-di-jawa-barat-2/ . [11 September 2020]
Dinas Tenaga Kerja Kabupaten Buleleng. 2019. Banyaknya Pengangguran karana kurangnya Pelatihan keterampilan kerja. Website Pemerintah Kabupaten Buleleng, Buleleng. https://www.bulelengkab.go.id/detail/artikel/banyaknya-pengangguran-karana-kurangnya-pelatihan-keterampilan-kerja-11 . [10 September 2020]
Dewi, N.K., Syafitri, U.D., & Mulyadi, S.Y., 2011. Penerapan Metode Random Forest dalam Driver Analysis (The Application of Random Forest in Driver Analysis). Forum Statistika dan Komputasi, 16 (1), 35-43
Hasby, M., 2019. Faktor- Faktor yang Memengaruhi Pengangguran Pemuda di Provinsi Banten tahun 2018 (Skripsi). Politeknik Statistika STIS.
Kaufman, B.E., & Hotchkiss, J.L., 1999. The Economic Labor Markets. Georgia State University.
Lipsey, R.G., Purvis, D.D., Courant, P.N., & Steiner, P.O., 1997. Pengantar Makroekonomi. Jilid kedua. Agus Maulana [penerjemah]. Binarupa Aksara.
Lunardon, N., Menardi, G., & Torelli, N. 2014. ROSE: a Package for Binary Imbalanced Learning. The R Journal, 6(1), 79.
Maulida, I., & Nooraeni, R., 2020. Penerapan Metode Random Forest Untuk Klasifikasi Wanita Usia Subur di Perdesaan Dalam Menggunakan Internet (SDKI 2017). Jurnal Matematika Dan Statistika Serta Aplikasinya, 8(1), 72-76.
Pramana, S., Yuniarto, B., Mariyah, S., Santoso, I., & Nooraeni, R., 2018. Data Mining dengan R Konsep Serta Implementasi. InMedia.
Purwa, T., 2019. Perbandingan Metode Regresi Logistik dan Random Forest untuk Klasifikasi Data Imbalanced (Studi Kasus: Klasifikasi Rumah Tangga Miskin di Kabupaten Karangasem, Bali Tahun 2017). Jurnal Matematika, Statistika Dan Komputasi, 16(1), 58.
Putra, D.A., 2018. Pemerintah Jokowi Ciptakan 10,34 Juta Lapangan Kerja Baru Sejak 2015 Hingga 2018. Merdeka.com, Jakarta. https://www.merdeka.com/uang/pemerintah-jokowi-ciptakan-1034-juta-lapangan-kerja-baru-sejak-2015-hingga-2018.html . [10 September 2020]
Sartono B, Syafitri UD. 2010. Ensemble Tree: an Alternative toward Simple Classification & Regression Tree. Forum Statistika dan Komputasi. 15(1):1-7.
Sukirno, S., 2000. Makro Ekonomi Modern. Raja Grafindo Persada.
Sukirno, S., 2006. Makroekonomi Teori Pengantar. Raja Grafindo Persada.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Author and publisher
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.