Application of Random Forest Method Classification to Predict BPJS Kesehatan Card Users Who Receive Contribution Assistance in Karangasem District, Bali Province 2017
DOI:
https://doi.org/10.20956/jmsk.v17i2.11710Keywords:
BPJS Kesehatan PBI, Karangasem, Classification, Random ForestAbstract
BPJS Kesehatan is a social security facility provided by the government to all people who are registered as members. BPJS Kesehatan membership is divided into two, namely BPJS for Contribution Assistance Recipients (BPJS PBI) and BPJS Non-Contribution Assistance Recipients (BPJS Non-PBI). In 2019, Bali Province is targeted to achieve Universal Health Coverage of 95 percent so that the Bali Provincial Government has budgeted funds worth IDR 945 billion to finance JKN - KBS services which are integrated with JKN - KIS. Karangasem is one of the four districts in Bali Province that received the most percentage of financing, which is 51 percent of the total budget needed when compared to other areas. This study aims to classify the BPJS-PBI recipient community based on education variables, employment indicators, age, and per capita expenditure in Karangasem Regency in 2017. The classification method used in this study is the random forest method. The results showed that the per capita expenditure variable had the largest contribution in classifying the status of PBI participants. The model that is formed produces an accuracy of 0.8017. This means that the model can predict 80.17 percent testing data correctly.
References
Amir, S. & Prasetyo B. (2020). Comparison of Elliptic Envelope Method and Isolation Forest Method on Imbalance Dataset. Jurnal Matematika, Statistika, dan Komputasi, 17(1), 42-49. DOI : 10.20956/jmsk.v%vi%i.10899
BPJS Kesehatan. (2016). Peserta Program JKN. Diunduh dari https://faskes.bpjs-kesehatan.go.id/aplicares/#/app/peta pada tanggal 13 Oktober 2020.
BPJS Kesehatan. (2020). Peserta BPJS. Diunduh dari https://bpjs-kesehatan.go.id/bpjs/pages/detail/2014/11 pada tanggal 13 Oktober 2020.
BPJS Kesehatan. (2020). Seputar BPJS Kesehatan. Diunduh dari https://bpjs-kesehatan.go.id/bpjs/dmdocuments/eac4e7a830f58b4ade926754f74b6caf.pdf pada tanggal 29 Oktober 2020.
BPS. (2018). Persentase Penduduk Miskin Provinsi Bali menurut Kabupaten/Kota. Diunduh dari https://bali.bps.go.id/indicator/23/125/1/persentase-penduduk-miskin-provinsi-bali-menurut-kabupaten-kota.html pada tanggal 13 Oktober 2020.
BPS. (2019). Indikator Ketenagakerjaan Kabupaten Karangasem. Diakses dari https://karangasemkab.bps.go.id/indicator/6/93/1/indikator-ketenagakerjaan-kabupaten-karangasem.html pada tanggal 14 Oktober 2020.
Diana, F. N. (2019). Pekerja Informal dan Kemiskinan di Bekasi. Diunduh dari http://m.ayobekasi.net/read/2019/05/20/2805/pekerja-informal-dan-kemiskinan-di-kabupaten-bekasi pada tanggal 12 Oktober 2020.
Fudloli, M. T., & Sukidin. (2015). Tingkat Partisipasi Angkatan Kerja Masyarakat Miskin di RT.01 RW.06 Desa Tegal Gede Kecamatan Sumbersari Kabupaten Jember. Jurnal Pendidikan Ekonomi, 9(2), 15-25. Diakses dari https://jurnal.unej.ac.id/index.php/JPE/article/view/3368
Nisa, I. M. K., & Nooraeni, R. (2020). Penerapan Metode Random Forest Untuk Klasifikasi Wanita Usia Subur di Perdesaan Dalam Menggunakan Internet (SDKI 2017). Jurnal Matematika Dan Statistika Serta Aplikasinya, 8(1), 72-76. DOI: https://doi.org/10.24252/msa.v8i1.13162f
Pramana, S., Yuniarto, B., Mariyah, S., Santoso, I., Nooraeni, R. (2018). Data Mining dengan R: Konsep serta Implementasi. Bogor: In Media.
Wiratmini, N. E. (2018). Targetkan UHC 95% pada 2019, Bali Anggarkan Rp495 Miliar untuk Pembiayaan JKN. Diunduh dari Bali Bisnis: https://bali.bisnis.com/read/20181231/537/874159/targetkan-uhc-95-pada-2019-bali-anggarkan-rp495-miliar-untuk-pembiayaan-jkn pada tanggal 14 Oktober 2020.
Yuniati, M. (2020). Analisis Ekonomi Angkatan Kerja Perempuan Berdasarkan Tingkat Pendidikan Diploma dan Universitas di Provinsi NTB Tahun 2016 - 2018. Jurnal Bina Ilmiah, 14(6), 2703-2710. DOI : https://doi.org/10.33758/mbi.v14i6.416
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Author and publisher
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.