Wave Reflection in Oscillating Water Column (OWC) Type Breakwater


  • Sugianto Sugianto Universitas Hasanuddin
  • Rita Tahir Lopa Departemen Teknik Sipil, Universitas Hasanuddin
  • Riswal Karamma Departemen Teknik Sipil, Universitas Hasanuddin
  • Chairul Paotonan Departement of Ocean Engineering Hasanuddin University




Breakwater, Oscillating water column, Wave reflection


Breakwater functions as a coastal protection structure, it is important to design a breakwater model that is able to perform a dual function as a wave energy catcher. To gain a deeper understanding of the wave reflection influenced by the slope and inlet hole on the OWC type breakwater model, a more comprehensive study is needed. This study aims to determine the reflection of waves in front of the OWC type breakwater model with variations in slope angle and variations in inlet openings. The research method is experimental. The study used an OWC type wave absorber model with two variations of tilt angle (q) 450 and 600, variation of stroke with flap movement of 4, 5, and 6, variation of water depth (d) 17.5 cm, 21 cm, and 24.5 cm and variation of openings (closed inlet, open inlet 5 cm, 10 cm, and 15 cm). The results showed that the effect of the inlet opening (h) on the Kr value is quite significant, indicated by the reflected waves being large. The Kr value is greater with increasing inlet openings, due to the relatively small damped waves and the pressure that occurs from inside the inlet hole is greater, the Kr value is large in the OWC type breakwater model.


Download data is not yet available.


S. Park, B.W. Nam, K.H. Kim, dan K. Hong, Parametric Study on Oscillating Water Column Wave Energy Converter Applicable To Breakwater. Journal of Advanced Research in Ocean Engineering 4(2) (2018) 066-077.

W.O.Z. Prihatini, M.A. Thaha, M.P. Hatta, C. Paotonan, Wave Height Transformation on the WCSP-DS Zigzag Model with and Without Wave Focused Wall, 5th International Confrence on Modern Research in Engineering, Technology and Science, Rotterdam, the Netherlands, 22 – 27 February 2022. 16-9336.

A.I.D. Puspita, M.S. Pallu, A. Thaha, dan F. Maricar, Breaker Parameter Pada Owec Breakwater Dan Pengaruhnya Terhadap Debit Overtopping. Prosiding Konferensi Nasional Pascasarjana Teknik Sipil (KNPTS). Invensi, Inovasi dan Riset Keselamatan Dan Kesehatan Kerja untuk Pembangunan Infrastruktur Berkelanjutan. 2 Oktober 2018, ISSN 2477-00-86

A. Thaha, F. Maricar, A. Aboe, dan A. Dwipuspita, The breakwater, from wave breaker to wave catcher. Procedia Engineering Elsevier, 691-698. 2015.

R. Karamma, Ashury, N. Karim, A.A. Almunawir, Studi Laboratorium Disipasi dan Refleksi Gelombang pada Susunan Pipa Sebagai Pemecah Gelombang. SENSISTEK Seminar Sains dan Teknologi Kelautan, Gedung CSA Kampus Fakultas Teknik UNHAS Gowa 1 Oktober 2019.

A. Rusady, R.T. Lopa, I. Rohani, Analisis Pemecah Gelombang (Breakwater) Di Bamballoka Kabupaten Pasangkayu. Journal of Civil Engineering. Volume 1, No 1 September 2018.

W. O. Z. Prihatini, M. A. Thaha, M. P. Hatta, and C. Paotonan, “EFFECT OF FREEBOARD HIGH ON WAVE REFLECTION ON ZIGZAG MODEL WCSP-DS BUILDING”, Astonjadro, vol. 11, no. 2, pp. 343–354, May 2022.

C.E.R.C, Shore Protection Manual, Departement of The Army, Waterways Experiment Station. Vickburg, Mississipi, 1984.

S. Sugianto, R. T. Lopa, R. Karamma, and C. Paotonan, “Wave Reflection in Oscillating Water Column (OWC) Type Breakwater”, zonalaut, pp. 344-352, Nov. 2023.

N. Yuwono, Teknik Pantai Volume I, Biro Penerbit Keluarga Mahasiswa Teknik Sipil FT UGM, Yogyakarta, 1982.

S. Rahman and T. Pairunan, “Wave Force on Breakwater Structure in North Kalimantan”, mp, vol. 1, no. 1, pp. 26-33, Feb. 2022.

K. Horikawa, Coastal Engineering, University of Tokyo Press, Tokyo, 1978.

N. Yuwono, Perencanaan model Hidraulik (Hidraulik modeling). Laboratorium Hidrolik dan Hidrologi, Pusat antara Universitas Ilmu Teknik-UGM. Yogyakarta, 1996.



How to Cite

S. Sugianto, R. T. Lopa, R. Karamma, and C. Paotonan, “Wave Reflection in Oscillating Water Column (OWC) Type Breakwater”, zonalaut, vol. 4, no. 3, pp. 344-352, Nov. 2023.



Renewable Ocean Energy

Most read articles by the same author(s)