Predicting Tuberculosis Vulnerability Based on Environmental Factors Using Multi-Criteria Analysis in Bukittinggi

Eka Budi Satria (1) , Indang Dewata (2) , Iswandi Umar (3) , Nurhasan Syah (4) , Linda Handayuni (5) , Evi Hasnita (6)
(1) Doctoral Program in Environmental Science, Graduate School, Universitas Negeri Padang, West Sumatra, Indonesia & Fort De Kock Bukittinggi University, West Sumatra, Indonesia, Indonesia,
(2) Doctoral Program in Environmental Science, Graduate School, Universitas Negeri Padang, West Sumatra, Indonesia, Indonesia,
(3) Doctoral Program in Environmental Science, Graduate School, Universitas Negeri Padang, West Sumatra, Indonesia & Department of Geography, Faculty of Social Sciences, Universitas Negeri Padang, West Sumatra, Indonesia , Indonesia,
(4) Doctoral Program in Environmental Science, Graduate School, Universitas Negeri Padang, West Sumatra, Indonesia, Indonesia,
(5) STIKES Dharma Landbouw Padang, West Sumatra, Indonesia, Indonesia,
(6) Fort De Kock Bukittinggi University, West Sumatra, Indonesia, Indonesia

Abstract

Tuberculosis is still an infectious disease problem and the main cause of death in Indonesia, where there was an increase in cases from 301 per 100,000 population (2020) to 354,000 per 100,000 population (2021), with the death rate increasing by 55%. This research aims to determine the TB vulnerability cluster influenced by the main risk factors, namely TB prevalence, cure rate, immunization, population density, and population arrivals in Bukittinggi, using the Weight Product (WP) analysis method, and then describe them by mapping tuberculosis vulnerability. The findings indicate that four sub-districts exhibit the highest levels of tuberculosis vulnerability: Tarok Dipo (0.0379), Campago Guguk Bulek (0.0399), Campago Ipuh (0.0399), and Aur Tajungkang Tangah Sawah (0.0389). A multi-sectoral TB control committee comprising public works, environmental, and health agencies should be formed to organize and carry out focused actions. Establish a strong TB surveillance system that includes contact tracing, active case finding, and routine monitoring of important indicators. Create and implement specialized intervention packages for high-vulnerability subdistricts, including social support programs, housing rehabilitation, and air quality control.

Full text article

Generated from XML file

References

1. Arnadottir T. Tuberculosis and Public Health Policy and Principles in Tuberculosis Control. Paris: International Union Against Tuberculosis and Lung Disease; 2009. https://npin.cdc.gov/publication/tuberculosis-and-public-health-policy-and-principles-tuberculosis-control

2. Glaziou P, Sismanidis C, Floyd K. Global Epidemiology of Tuberculosis. Essential Tuberculosis. 2021;341–348. https://doi.org/10.1007/978-3-030-66703-0_37

3. Umar I, Dewata I. System Approach in Sustainable Natural Resource Management. DIY, Indonesia: Deepublish Publisher; 2021.

4. Gagneux S. Ecology and Evolution of Mycobacterium Tuberculosis. Nature Reviews Microbiology. 2018;16(4):202–213. https://doi.org/10.1038/nrmicro.2018.8

5. Zhang CY, Zhang A. Climate and Air Pollution Alter Incidence of Tuberculosis in Beijing, China. Annals of Epidemiology. 2019;37:71–76. https://doi.org/10.1016/j.annepidem.2019.07.003

6. Lee J, Park S, Jang S, Reyes KA, Garcia F, Canila C, et al. Differential Impacts of Health Systems and Sociocultural Environment on Vulnerable Populations During the COVID-19 Pandemic: Lessons from Four Asia-Pacific Countries. BMC Public Health. 2024;24(1):1501. https://doi.org/10.1186/s12889-024-18949-1

7. Ministry of Health of the Republic of Indonesia. Tuberculosis Control Program Report in 2022. Jakarta, Indonesia: Ministry of Health of the Republic of Indonesia; 2023. 1–156. https://www.tbindonesia.or.id/pustaka---program-la/laporan-tahunan-program-tbc-2021/

8. Health Office of West Sumatra Province. Tuberculosis Program Report. Padang, Indonesia; 2023.

9. Central Statistics Agency of Pontianak City. Pontianak City in Statistics 2022. Pontianak, Indonesia; 2022; Available from: https://pontianakkota.bps.go.id/publication/2022/02/25/125ffb2696a0108f62d7d6f0/kota-pontianak-dalam-angka-2022.html

10. WHO. WHO Operational Handbook on Tuberculosis: Module 3: Diagnosis: Rapid Diagnostics for Tuberculosis Detection, 2021 Update. Geneva: World Health Organization; 2022. https://www.who.int/publications/i/item/9789240030589

11. Amelia AR, Haeruddin, Batara AS, Darlis I. Spatial Analysis of Pulmonary Tuberculosis Transmission Based on Social, Economic, Cultural Interactions in the Slum Areas the City of Makassar. Media Kesehatan Masyarakat Indonesia. 2020;16(4):530–541. https://journal.unhas.ac.id/index.php/mkmi/article/view/10778

12. Herawati MH. Alternative Tuberculosis (TB) Control Strategies: Areas of Indonesia Outside Sumatra and Java-Bali. Jakarta: LIPI Press; 2021.

13. Moosazadeh M, Kheradmand M, Aarabi M, Afshari M, Parsaee M, Nezammahalleh A, et al. Factors Associated with Delay in Diagnosis among Tuberculosis Patients in the North of Iran. Medical Journal of Indonesia. 2021;30(1):60–65. https://doi.org/10.13181/mji.oa.204476

14. Odu GO. Weighting Methods for Multi-criteria Decision Making Technique. Journal of Applied Sciences and Environmental Management. 2019;23(8):1449-1457. https://doi.org/10.4314/jasem.v23i8.7

15. Ramadiani, Ramadhani B, Arifin Z, Jundillah ML, Azainil A. Decision Support System for Determining Chili Land Using Weighted Product Method. Bulletin of Electrical Engineering and Informatics. 2020;9(3): 1229–1237. https://doi.org/10.11591/eei.v9i3.2004

16. Rocha J, Gomes E, Boavida-Portugal I, Viana CM, Truong-Hong L, Phan AT. GIS and Spatial Analysis. Rijeka: IntechOpen; 2023. https://www.intechopen.com/books/11488

17. Abdul Rasam AR, Mohd Shariff N, Dony JF. Geospatial-Based Model for Diagnosing Potential High-Risk Areas of Tuberculosis Disease in Malaysia. MATEC Web Conferences. 2019;266:02007. https://doi.org/10.1051/matecconf/201926602007

18. Dongmei Chen A a. Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases. Dongmei, Chen, Bernard Moulin JW, Editors. Canada: John Wiley & Sons, Inc., Hoboken, New Jersey; 2015. https://www.wiley.com/en-us/Analyzing+and+Modeling+Spatial+and+Temporal+Dynamics+of+Infectious+Diseases-p-9781118630013

19. Zavadskas EK, Antucheviciene J, Chatterjee P. Multiple-Criteria Decision-Making (MCDM) Techniques for Business Processes Information Management. Information. 2018;10(1):1-7. https://doi.org/10.3390/info10010004

20. Natasya SK, Widaningrum DL. Proximity Analysis Using Weighted Product Method: Case Study for Fast-Food Restaurants. Procedia Computer Science. 2024;234 (2023):1761–1768. https://doi.org/10.1016/j.procs.2024.03.183

21. Alhababy AM. Spatial Analysis in Epidemiology. Vol. 14. Oxford University Press; 2016. 1–23.

22. Umar I, Arif DA. Spatial Models of Rice Fields Change and Sustainable Agriculture in Solok District, West Sumatra Province. Journal of Degraded and Mining Lands Management. 2023;11(1):4875–4885. https://doi.org/10.15243/jdmlm.2023.111.4875

23. Ahmed N, Thompson S, Turchini GM. Organic Aquaculture Productivity, Environmental Sustainability, and Food Security: Insights from Organic Agriculture. Food Security. 2020;12(6):1253–1267. https://doi.org/10.1007/s12571-020-01090-3

24. Health Office of Bukittinggi City. Health Profile of Bukittinggi. 2021.

25. BPS. Bukittinggi dalam Statistik. Bukittinggi City: Badan Pusat Statistik; 2023.

26. Wu S, Litvinjenko S, Magwood O, Wei X. Defining Tuberculosis Vulnerability Based on an Adapted Social Determinants of Health Framework : a Narrative Review. Global Public Health. 2023;18(1):1–12. https://doi.org/10.1080/17441692.2023.2221729

27. Wahyudi G, Toaha A, Amalia R, Muslimin D, Adri K, Febriani RT, et al. Epidemiology. PT. Global Eksekutif Teknologi; 2022.

28. de Paiva JPS, Magalhães MAFM, Leal TC, da Silva LF, da Silva LG, do Carmo RF, et al. Time Trend, Social Vulnerability, and Identification of Risk Areas for Tuberculosis in Brazil: An Ecological Study. PLoS One. 2022;17(1):1–23. https://doi.org/10.1371/journal.pone.0247894

29. Singh SK, Kashyap GC, Puri P. Potential Effect of Household Environment on Prevalence of Tuberculosis in India: Evidence from the Recent Round of a Cross-Sectional Survey. BMC Pulmonary Medicine. 2018;18(1):1–10. https://doi.org/10.1186/s12890-018-0627-3

30. Seid G, Alemu A, Dagne B, Sinshaw W, Gumi B. Tuberculosis in Household Contacts of Tuberculosis Patients in Sub-Saharan African Countries: A Systematic Review and Meta-Analysis. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases. 2022 Dec;29:100337.https://doi.org/10.1016/j.jctube.2022.100337

31. Wikurendra EA, Nurika G, Tarigan YG, Kurnianto AA. Risk Factors of Pulmonary Tuberculosis and Countermeasures: A Literature Review. Open Access Macedonian Journal of Medical Sciences. 2021;9:549–555. https://doi.org/10.3889/oamjms.2021.7287

32. Mahaguna Putra M, Putu Wulan Purnama Sari N. Model Theory of Planned Behavior to Improve Adherence to Treatment and the Quality of Life in Tuberculosis Patients. Jurnal Ners. 2020;15(3):1–6. https://doi.org/10.20473/jn.v15i2.17958

33. Herawanto, Wahyuni NMA, Rau MJ, Yuniarti ID, Syahadat DS, Hasanah H, et al. Factors Affecting the Cure Rate of Tuberculosis in South Palu District, City of Palu. Jurnal Kesmas Untika Luwuk Public Health Journal. 2022;13(2):62–72. https://doi.org/10.51888/phj.v13i2.134

34. Carlos J, Junior P. Spatial Analysis of Tuberculosis Cure in Primary Care in Rio de Janeiro, Brazil. BMC Public Health. 2021;21(1841):1–15. https://doi.org/10.1186/s12889-021-11834-1

35. Fatima S, Kumari A, Das G, Dwivedi VP. Tuberculosis Vaccine: A Journey from BCG to Present. Life Sciences. 2020;252:117594. https://doi.org/10.1016/j.lfs.2020.117594

36. Trollfors B, Sigurdsson V, Dahlgren-Aronsson A. Prevalence of Latent TB and Effectiveness of BCG Vaccination Against Latent Tuberculosis: An Observational Study. International Journal of Infectious Diseases. 2021;109:279–282. https://doi.org/10.1016/j.ijid.2021.06.045

37. Rengganis Wardani DWS, Wahono EP. Spatio-Temporal Dynamics of Tuberculosis Clusters in Indonesia. Indian Journal of Community Medicine. 2020;45(1). https://journals.lww.com/ijcm/fulltext/2020/45010/spatio_temporal_dynamics_of_tuberculosis_clusters.11.aspx

38. Saputra FF, Wahjuni CU, Isfandiari MA. Spatial Modeling of Environmental-Based Risk Factors of Tuberculosis in Bali Province: an Ecological Study. Jurnal Berkala Epidemiologi. 2020;8(1):26. https://doi.org/10.20473/jbe.v8i12020.26-34

39. Stang, Mallongi A, Dwinata I, Sumarni. Risk Factor Model for Pulmonary Tuberculosis Occurrence in Makassar Using Spatial Approach. Enfermería Clínica. 2020;30: 383–387. https://doi.org/10.1016/j.enfcli.2019.10.105

40. Spruijt I, Erkens C, Greenaway C, Mulder C, Raviglione M, Villa S, et al. Reducing the Burden of TB Among Migrants to Low TB Incidence Countries. International Journal of Tuberculosis and Lung Disease. 2023;27(3):182–188. https://doi.org/10.5588/ijtld.22.0662

41. Rossato D, Carvalho F, Mello DQ, Dockhorn F, Johansen C, Centis R, et al. Migration and Medical Screening for Tuberculosis. Jornal Brasileiro de Pneumologia. 2023;49(2):1–5. https://dx.doi.org/10.36416/1806-3756/e20230051

42. Abayneh M, Hailemariam S, Asres A. Low Tuberculosis (TB) Case Detection : A Health Facility-Based Study of Possible Obstacles in Kaffa Zone, Southwest District of Ethiopia. Canadian Journal of Infectious Diseases and Medical Microbiology. 2020;1-9. https://doi.org/10.1155/2020/7029458

43. Litvinjenko S, Magwood O, Wu S, Wei X. Burden of Tuberculosis Among Vulnerable Populations Worldwide: an Overview of Systematic Reviews. Lancet Infectious Diseases. 2023;23(12):1395–1407. https://doi.org/10.1016/S1473-3099(23)00372-9

Authors

Eka Budi Satria
Indang Dewata
indangdewata@fmipa.unp.ac.id (Primary Contact)
Iswandi Umar
Nurhasan Syah
Linda Handayuni
Evi Hasnita
Author Biographies

Eka Budi Satria, Doctoral Program in Environmental Science, Graduate School, Universitas Negeri Padang, West Sumatra, Indonesia & Fort De Kock Bukittinggi University, West Sumatra, Indonesia

Doctoral Program in Environmental Science, Graduate School, Universitas Negeri Padang, West Sumatra, Indonesia

Fort De Kock Bukittinggi University, West Sumatra, Indonesia

Indang Dewata, Doctoral Program in Environmental Science, Graduate School, Universitas Negeri Padang, West Sumatra, Indonesia

Doctoral Program in Environmental Science, Graduate School, Universitas Negeri Padang, West Sumatra, Indonesia

Iswandi Umar, Doctoral Program in Environmental Science, Graduate School, Universitas Negeri Padang, West Sumatra, Indonesia & Department of Geography, Faculty of Social Sciences, Universitas Negeri Padang, West Sumatra, Indonesia

Doctoral Program in Environmental Science, Graduate School, Universitas Negeri Padang, West Sumatra, Indonesia 

Department of Geography, Faculty of Social Sciences, Universitas Negeri Padang, West Sumatra, Indonesia

Nurhasan Syah, Doctoral Program in Environmental Science, Graduate School, Universitas Negeri Padang, West Sumatra, Indonesia

Doctoral Program in Environmental Science, Graduate School, Universitas Negeri Padang, West Sumatra, Indonesia

Linda Handayuni, STIKES Dharma Landbouw Padang, West Sumatra, Indonesia

STIKES Dharma Landbouw Padang, West Sumatra, Indonesia

Evi Hasnita, Fort De Kock Bukittinggi University, West Sumatra, Indonesia

Fort De Kock Bukittinggi University, West Sumatra, Indonesia

Satria, E. B., Dewata, I., Umar, I., Syah, N., Handayuni, L., & Hasnita, E. (2024). Predicting Tuberculosis Vulnerability Based on Environmental Factors Using Multi-Criteria Analysis in Bukittinggi. Media Kesehatan Masyarakat Indonesia, 20(4), 152–163. https://doi.org/10.30597/mkmi.v20i4.36887

Article Details

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.