Classification Methods for Mapping Mangrove Extents and Drivers of Change in Thanh Hoa Province, Vietnam during 2005-2018

Hai-Hoa Nguyen, Nghia Huu Nghia, Hien Thi Thu Nguyen, An Thanh Le, Lan Thi Ngoc Tran, Linh Vo Khanh Duong, Simone Bohm, Michael J Furniss


Mangrove forests have been globally recognised as their vital functions in preventing coastal erosion, mitigating effects of wave actions and protecting coastal habitats and adjacent shoreline land-uses from extreme coastal events. However, these functions are under severe threats due to the rapid growth of population, intensive shrimp farming and the increased intensity of severe storms in Hau Loc and Nga Son districts, Thanh Hoa province. This research was conducted to monitor spatial-temporal changes in mangrove extents using Landsat and Sentinel imageries from 2005 to 2018. Unsupervised and supervised classification methods and vegetation indices were tested to select the most suitable classification method for study sites, then to quantify mangrove extents and their changes in selected years. The findings show that supervised classification was the most suitable in study sites compared to vegetation indices and unsupervised classification. Mangrove forest extents increased by 7.5 %, 38.6 %, and 47.8 % during periods of 2005 - 2010, 2010 - 2015 and 2015 - 2018, respectively. An increase of mangrove extents resulted from national programs of mangrove rehabilitation and restoration during 2005- 2018, increased by 278.0 ha (123.0 %).


Mangrove; restoration; remote sensing; spatio-temporal; vegetation

Full Text:



Abdullah, K., Said, A. M., & Omar, D. (2014). Community-based conservation in managing mangrove rehabilitation in Perak and Selangor. Procedia-Social and Behavioral Sciences, 153, 121-131. doi:

Aheto, D. W., Kankam, S., Okyere, I., Mensah, E., Osman, A., Jonah, F. E., & Mensah, J. C. (2016). Community-based mangrove forest management: Implications for local livelihoods and coastal resource conservation along the Volta estuary catchment area of Ghana. Ocean and Coastal Management, 127, 43-54. doi:

Alsaaideh, B., Al-Hanbali, A., Tateishi, R., Kobayashi, T., & Hoan, N. T. (2013). Mangrove forests mapping using Landsat ETM+ with DEM. Journal of Geographic Information System, 5, 369-377. doi:

Agarwal, N., Bonino, C., Deligny, A., Festa, C., Ghislain, M., Homolova, K., Velasquez, A. K., Kurtev, L., Pinto, A. O., Virat, V., Serban-Penhoat, J., & Thomas, M. (2019). Getting the shrimp’s share mangrove deforestation and shrimp consumption assessment and alternatives. Sciences Po- Paris School of International Affairs (IDDRI), 102pp

Batadlan, B. D., Paringit, E. C., Santillan, J. R., Caparas, A. S., & Fabila, J. L. (2009). Analysis of background variations in computed spectral vegetation indices and its implications for mapping mangrove forests using satellite imagery. In 4th ERDT Conference, Manila, Philippines.

Buffle, P., Nguyen, T. Y., & Morten, F. T. (2011). Community-based Mangrove Reforestation and Management in Da Loc, Vietnam. Ecosystems and livelihoods adaptation network (ELAN). 11p

Chen, B., Xiao, X., Li, X., Pan, X., Doughty, R., Ma, J., Dong, J., Qin, Y., Zhao, B., Wu, Z., Sun, R., Lan, G., Xie, G., Clinton, N., & Giri, C. (2017). A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel 1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing. 131, 104- 210. doi:

Dat, P. T., Yoshino, K., Le, N. N., & Bui, D. T. (2018). Estimating aboveground biomass of a mangrove plantation on the Northern coast of Vietnam using machine learning techniques with an integration of ALOS-2 PALSAR-2 and Sentinel-2A data. International Journal of Remote Sensing, 39(22), 7761-7788. doi:

Dat, P. T., Anh, N. K., & Yoshino, K. (2000). Mapping wetland cover types using remote sensing and GIS in Can Gio Mangrove Biosphere Reserve, Vietnam. Lecture note in Earth Science: 66-74

Datta, D., Chattopadhyyay, R. N., & Guha, P. (2012). Community based mangrove management: a review on status and sustainability. Journal of Environmental Management, 107, 84-95. doi:

Duke, N., Nagelkerken, I., Agardy, T., Wells, S., & Van Lavieren, H. (2014). The importance of mangroves to people: a call to action. United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC3). 128pp

Duke, N., Wilson, N., Mackenzie, J. R., Hai-Hoa, N., & Pullar, D. (2010). Assessing mangrove forests, shoreline condition and feasibility of REDD for Kien Giang province, Vietnam. Technical Report. 137pp. doi: 10.13140/RG.2.1.1032.5367

Exner, A., Fleissner, P., Kranzl, L., & Zitel, W. (2014). Land and resource scarcity: Capitalism, struggle and well-being in a world without fossil fuels. Routledge Taylor and Francis Group. 320pp

Field, C., Osborn, J., Hoffman, L., Polsenberg, J., Ackerly, D., Berry, J., Bjorkman, O., Held, A., Matson, P., & Mooney, H. (1998). Mangrove biodiversity and ecosystem function. Global Ecology & Biogeography Letters, 7(1), 3-14. doi: 10.2307/2997693

Green, E. P., Clark, C. D., Mumby, P. J., Edwards, A. J., & Ellis, A. C. (1998). Remote sensing techniques for mangrove mapping. International Journal of Remote Sensing, 19(5), 935-956. doi:

Gupta, K., Mukhopadhyay, A., Giri, S., Chanda, A., Majumdar, S. D., Samanta, S., & Hazra, S. (2018). An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, 5, 1129-1139. doi:

Ha,T. T., Van, D. P. H., & Visser, L. (2014). Impacts of changes in mangrove forest management practices on forest accessibility and livelihood: A case study in mangrove-shrimp farming system in Ca Mau Province, Mekong Delta, Vietnam. Land Use Policy, 36, 89-101. doi:

Hai-Hoa, N. (2016). Using Landsat imagery and vegetation indices differencing to detect mangrove change: A case in Thai Thuy district, Thai Binh province. Journal of Forest Science and Technology, 5, 59-66.

Hai-Hoa, N. (2014). The relation of coastal mangrove changes and adjacent land-use: A review in Southeast Asia and Kien Giang, Vietnam. Ocean and Coastal Management, 90, 1-10. doi:

Hawkins, S., To, P. X., Phuong, P. X., Thuy, P. T., Tu, N. D., Cuong, C. V., Brown, S., Dart, P., Robertson, S. M., Vu, N., & McNally, R. (2010). Roots in the Water: Legal Frameworks for Mangrove PES in Vietnam. Katoomba Group's Legal Initiative Country Study Series. Forest Trends: Washington, DC. 55pp

Hoa, S. L. T., Suzuki, R., & Thomsen, M. F. (2012). Adapting to natural disasters and contributing to climate change mitigation: mangrove community forestry in Viet Nam. Sharing Lessons on Mangrove Restoration. Proceedings and a Call Action from an MFF Regional Colloquium 30- 31 August 2012, Mamallapuram, India, 265-275.

Hong, P. N., & San, H. T. (1993). Mangroves of Vietnam. IUCN, Vol. 7.

Islam, M. M., Borgqvist, H., & Kumar, L. (2018). Monitoring mangrove forest land cover changes in the coastline of Bangladesh from 1976 to 2015. Geocarto International, 34(13), 1458-1476. doi:

International Federation of Red Cross and Red Crescent Societies. (2011). Breaking the waves: Impact analysis of coastal afforestation for disaster risk reduction in Vietnam. 60pp

Jiang, Z., Raghavan, S. V., Hur, J., Sun, Y., Liong, S., Nguyen, V. Q., & Dang, T. V. P. (2018). Future changes in rice yields over the Mekong River Delta due to climate change- alarming or alerting? Theoretical and Applied Climatology, 137, 545- 555. doi:

Kongwongjan, J., Suwanprasit, C., & Thongchumnum, P. (2012). Comparison of vegetation indices for mangrove mapping using THEOS data. Proceedings of the Asia-Pacific Advanced Network, 33, 56-64.

Kongkeaw, C., Kittitornkool, J., Vadergeest, P., & Kittiwatanawong, K. (2019). Explaining success in community based mangrove management: Four coastal communities along the Andaman Sea, Thailand. Ocean and Coastal Management, 178, doi:

Lee, S. Y., Primavera, J. H., Dahdouh-Guesbas, F., Mckee, K., Bosire, J. O., Cannicci, S., & Mendelssohn, I. (2014). Ecological role and services of tropical mangrove ecosystems: A reassessment. Global Ecology and Biogeography, 23(7), 726-743. doi:

Li, P., Jiang, L., & Feng, Z. (2013). Cross-comparison of vegetation indices derived from Landsat-7 enhanced thematic mapper plus (ETM+) and Landsat-8 operational land imager (OLI) sensors. Remote Sensing, 6(1), 310-329. doi:

Long, J. B., & Giri, C. (2011). Mapping the Philippines’ mangrove forests using Landsat imagery. Sensors, 11(3), 2972-2981. doi:

Lu, D., Mausel, P., Brondizio, E., & Morab, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365-2401. doi:

Muhsoni, F. F., Sambah, A., Mahmudi, M., & Wiadnya, D. (2018). Comparison of different vegetation indices for assessing mangrove density using sentinel-2 imagery. Int. J. Geomate, 14, 42-51. doi:

Norjamaki, I., & Tokola, T. (2007). Comparison of atmospheric correction methods in mapping timber volume with multi-temporal Landsat images in Kainuu, Finland. Photogrammetric Engineering & Remote Sensing, 73(2), 155-163. doi:

Peneva-Reed, E. (2014). Understanding land-cover change dynamics of a mangrove ecosystem at the village level in Krabi Province, Thailand, using Landsat data. GIScience & Remote Sensing, 51(4), 403-426. doi:

Pham, T. T., Bennet, K., Vu, T. P., Brunner, J., Le, N. D., & Nguyen, D. T. (2013). Payments for forest environmental services in Vietnam: from policy to practice. Occasional Paper 93. Borgor, Indonesia, CIFOR. 96pp

Phuc, T. X., Nghi, T. H., & Zagt, R. (2013). Forest land allocation in Viet Nam: implementation processes and results. Tropenbos International Vietnam: 1-10.

Phuc, T. X., & Nghi, T. H. (2014). Forest land allocation in the context of forestry sector restructuring: opportunities for forestry development and upland livelihood improvement, Vietnam. Tropenbos International Vietnam. 86pp

Primavera, J. H. (2000). Development, and conservation of Philippine mangroves: institutional issues. Ecological Economics, 35(1), 91-106. doi:

The Prime Minister. (2015). Approving the project on protection and development of coastal forests to cope with climate change in 2015-2020 period. Decision No 120/QĐ-Ttg, dated 22 January 2015. 32pp

Quang, N. V., & Noriko, S. (2008). Forest allocation policy and level of forest dependency of economic household groups: A case study in northern central Vietnam. Small-scale Forestry, 7(1), 49-66. doi:

Raghavan, S. V., Vu, M. T., & Liong, S. Y. (2015). Regional climate simulations over Vietnam using the WRF model. Theoretical and Applied Climatology, 126(1-2), 161–182. doi:

Ramdani, F., Rahman, S., & Giri, C. (2018). Principal polar spectral indices for mapping mangroves forest in South East Asia: study case Indonesia. International Journal of Digital Earth, 12, 1103-1117. doi:

Rogan, J., & Chen, D. (2004). Remote sensing technology for mapping and monitoring land-cover and land-use change. Progress in Planning, 61(4), 301-325. doi:

Reed, S. O., Nghi, N. V., Minh, N. A., Lien, H. T. K., Hung, T. M., Thien, N. V., & Anh, N. K. (2015). Building Coastal Resilience in Vietnam: An integrated, community-based approach to mangrove management, disaster risk reduction, and climate change adaptation. CARE international in Vietnam. 80pp

Richards, D. R., & Friess, D. A. (2016). Rates and Drivers of mangrove deforestation in Southeast Asia, 2000- 2012. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 113(2), 344-349. doi:

Salem, M. E., & Mercer, D. E. (2012). The economic value of mangroves: A meta-analysis. Sustainability, 4(3), 359-383. doi:

Saleh, M. (2007). Mangrove vegetation on Abu Minqar Island of the Red Sea. International Journal of Remote Sensing, 28(23), 5191-5194. doi:

Singh, A. (1989). Review article digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989-1003. doi:

Song, C., Woodcock, C. E., Seto, K. C., Lenney, M. P., & Macomber, S. A. (2001). Classification and change detection using Landsat TM data: when and how to correct atmospheric effects. Remote Sensing of Environment, 75(2), 230-244. doi:

Sommerville, M. (2016). Mangrove payment for environmental services in Vietnam: Opportunities and challenges. Washington, DC: USAID Tenure and Global Climate Change Program. 34pp

Thanh Hoa DARD (Department of Agriculture and Rural Development). (2018). Reviewing coastal mangrove forest land in districts to participate in projects to restore and develop coastal protective forests. Report No.62/BC-SNN&PTNT (In Vietnamese).

Tran Thi, V., Tien Thi Xuan, A., Phan Nguyen, H., Dahdouh, F., & Koedam, N. (2014). Application of remote sensing and GIS for detection of long-term mangrove shoreline changes in Mui Ca Mau, Vietnam. Biogeosciences, 11, 3781-3795. doi:

Treadal, L. T., & Vedeld, P. O. (2017). Livelihoods and land uses in environmental policy approaches: the case of PES and REDD+ in the Lam Dong province of Vietnam. Forest, 8, 39. doi:

Van Lavieren, H., Spalding, M., Alongi, D. M., Kainuma, M., Clusener-Godt, M., & Adeel, Z. (2012). Securing the future of mangroves. A policy brief. UNU-INWEH, UNESCO-MAB with ISME, ITTO, FAO, UNEP-WCMC and TNC. 53pp

Viswanathan, P. K., Pathak, K. D., & Mehta, I. (2011). Socio-economic and ecological benefits of mangrove plantation: A study of community based mangrove restoration activities in Gujarat. Gujarat Institute of Development Research. 164p.

Wang, F. M., Huang, J. F., Tang, Y. L., & Wang, X. Z. (2007). New vegetation index and its application in estimating leaf area index of rice. Rice Science, 14(3), 195-203. doi:

Wang, Y., Bonynge, G., Nugranad, J., Traber, M., Ngusaru, A., Tobey, J., & Makota, V. (2003). Remote sensing of mangrove change along the Tanzania coast. Marine Geodesy. 26(1-2), 35-48. doi:

Xia, Q., Qin, C., Li, H., Huang, C., & Su, F. (2018). Mapping mangrove forests based on multi-tidal high resolution satellite imagery. Remote Sens, 10, 1343. doi:

Zhang, X., Treitz, P. M., Chen, D., Quan, C., Shi, L., Li, Z. (2017). Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree based procedure. Int J Appl Earth Obs Geoinformation, 62, 201-214. doi:

Zhang, K., Dong, X., Liu, Z., Gao, W., Hu, Z., & Wu, G. (2019). Mapping flats with Landsat 8 images and Google Earth Engine: A case study of the China’s Eastern coast zone circa 2015. Remote Sensing, 11, 924. doi:



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Forest and Society is licensed under a Creative Commons Attribution 4.0 International License

View My Stats

Forest and Society has been indexed/registered/mentioned in : 


View full indexing services