Best proximity point theorems for $ \alpha^{+} F, (\theta-\phi )$-proximal contraction
DOI:
https://doi.org/10.20956/j.v18i2.17994Keywords:
proximity point, $ \alpha^{ } F$-proximal contraction, $ \alpha^{ } (\theta-\phi )$-proximal contractionAbstract
In this paper, inspired by the idea of Suzuki type $ \alpha^{+} F$-proximal contraction in metric spaces, we prove a new existence of best proximity point for Suzuki type $ \alpha^{+} F$-proximal contraction and $ \alpha^{+} (\theta-\phi )$-proximal contraction defined on a closed subset of a complete metric space. Our theorems extend, generalize, and improve many existing results.
References
bibitem{KI} A. A. Eldred, W. A. Kirk, P. Veeramani, Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 171, 283–293 (2005).
bibitem{HS} N. Hussain, M. Hezarjaribi, M. Kutbi, P. Salimi, Best proximity results for Suzuki and convex type contractions. Fixed Point Theory Appl 2016, 14 (2016). https://doi.org/10.1186/s13663-016-0499-2
bibitem{JK} M. Jleli, B. Samet : A new generalization of the Banach contraction principale. J. Inequal. Appl.$2014$. Article ID $38$. Appl. Anal., $2014(2014),11$ pages.
bibitem{RJ} V. S. Raj, A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. 74, 4804–4808 (2011).
bibitem{ZHN} J. Zhang, Y. Su, Q. Cheng, A note on ‘A best proximity point theorem for Geraghty-contractions’. Fixed Point Theory Appl 2013, 99 (2013). https://doi.org/10.1186/1687-1812-2013-99
bibitem{ZH} D. Zheng, Z. Cai, P. Wang, New fixed point theorems for ($theta-phi $)-contraction in complete metric spaces. J. Nonlinear Sci. Appl. (2017); 10(5):2662-2670.
bibitem{WR} D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces.
Fixed Point Theory Appl 2012, 94 (2012).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Author and publisher
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.