Continuous $K$-$g$-fusion frames in Hilbert $C^*$-modules


  • Fakhr-dine Nhari
  • Choonkil Park
  • Mohamed Rossafi Faculty of Sciences, Dhar El Mahraz University Sidi Mohamed Ben Abdellah, Fes,



Continuous fusion frame, Continuous $g$-fusion frame, Continuous $K$-$g$-fusion frame, $C^{\ast}$-algebra, Hilbert $C^{\ast}$-module


In this paper, we introduce the concept of continuous $g$-fusion frame and $K$-$g$-fusion frame in Hilbert $C^{\ast}$-modules. Furthermore, we investigate some properties of them and discuss the perturbation problem for continuous $K$-$g$-fusion frames.


Download data is not yet available.


bibitem{11} S. T. Ali, J. P. Antoine, J. P. Gazeau, emph{Continuous frames in Hilbert spaces}, Ann. Phys. {bf

} (1993), 1--37.

bibitem{Deh} A. Alijani, M. Dehghan, emph{$ast$-Frames in Hilbert $mathcal{C}^{ast}$-modules}, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. {bf 73} (2011), no. 4, 89--106.

bibitem{Ara} L. Arambav{s}i'{c}, emph{On frames for countably generated Hilbert $mathcal{C}^{ast}$-modules}, Proc. Am. Math. Soc. {bf 135} (2007), 469--478.

bibitem{Con} J. B. Conway, emph{A Course in Operator Theory}, Am. Math. Soc., Providence, RI, 2000.

bibitem{dz} D. Du, Y.-C. Zhu, emph{Constructions of $K$-$g$-frames and tight $K$-$g$-frames in Hilbert spaces}, Bull. Malays. Math. Sci. Soc. {bf

} (2020), 4107--4122.

bibitem{Dav} F. R. Davidson, emph{$mathcal{C}^{ast}$-Algebra by Example}, Fields Inst. Mono. {bf 6}, Am. Math. Soc., Providence, RI, 1996.

bibitem{Duf} R. J. Duffin, A. C. Schaeffer, emph{A class of nonharmonic Fourier series}, Trans. Am. Math. Soc. {bf 72} (1952),


bibitem{Fang} X. Fang, J. Yu, H. Yao, {it Solutions to operator equations on Hilbert $C^{ast}$-modules}, Linear Algebra Appl. {bf 431} (2009), 2142--2153.

bibitem{Lar1} M. Frank, D. R. Larson, emph{$mathcal{A}$-Module frame concept for Hilbert $mathcal{C}^{ast}$-modules, functional and harmonic analysis of

wavelets}, Contempt. Math. {bf 247} (2000), 207--233.

bibitem{r4} S. Kabbaj, M. Rossafi, {it $ast$-Operator frame for $End_{mathcal{A}}^{ast}(mathcal{H})$}, Wavelet Linear Algebra {bf 5} (2018), no. 2, 1--13.

bibitem{15} G. Kaiser, emph{A Friendly Guide to Wavelets}, Birkh"{a}user, Boston, 1994.

bibitem{Kap} I. Kaplansky, emph{Modules over operator algebras}, Am. J. Math. {bf 75} (1953), 839--858.

bibitem{ka}S. K. Kaushik, L. K. Vashisht, S. K. Sharma, {it Some results concerning frames associated with measurable spaces}, TWMS J. Pure Appl. Math. {bf 4} (2013), no. 1, 52--62.

bibitem{Kho2} A. Khorsavi, B. Khorsavi, emph{Fusion frames and $g$-frames in Hilbert $mathcal{C}^{ast}$-modules}, Int. J. Wavelet, Multiresolution

Inform. Process. {bf 6 } (2008), 433--446.

bibitem{Lanc} E. C. Lance, {it Hilbert $C^{ast}$-Modules: A Toolkit for Operator Algebraist}, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 1995.


D. Li, J. Leng, T. Huang, {it On some equalities and inequalities of fusion frame in Hilbert $C^*$-modules}, J. Math. Inequal. {bf 13} (2019), 437--449.

bibitem{lh} Y.-Z. Li, T. Hussain, emph{Duality principles for $F_a$-frame theory in $L^2(mathbb{R}_+)$}, Bull. Malays. Math. Sci. Soc. {bf

} (2021), 2401--2423.

bibitem{Pas} W. Paschke, emph{Inner product modules over $B^{ast}$-algebras}, Trans. Am. Math. Soc. {bf 182} (1973), 443--468.

bibitem{r5} M. Rossafi, S. Kabbaj, {it $ast$-$K$-$g$-Frames in Hilbert $mathcal{A}$-modules}, J. Linear Topol. Algebra {bf 7} (2018), 63--71.

bibitem{r6} M. Rossafi, S. Kabbaj, {it $ast$-$g$-Frames in tensor products of Hilbert $C^{ast}$-modules}, Ann. Univ. Paedagog. Crac. Stud. Math. {bf 17} (2018), 17--25.

bibitem{r3} M. Rossafi, S. Kabbaj, {it Operator frame for $End_{mathcal{A}}^{ast}(mathcal{H})$}, J. Linear Topol. Algebra {it 8} (2019), 85--95.

bibitem{r1} M. Rossafi, S. Kabbaj, {it $ast$-$K$-Operator frame for $End_{mathcal{A}}^{ast}(mathcal{H})$,} Asian-Eur. J. Math. {bf 13} (2020), Art. ID 2050060.

bibitem{r9} M. Rossafi, S. Kabbaj, {it Generalized frames for $B(mathcal{H, K})$}, Iran. J. Math. Sci. Inf. {bf 17} (2022), no. 1, 1--9.

bibitem{va} L. K. Vashisht, {it Banach frames generated by compact operators associated with a boundary problem}, TWMS J. Pure Appl. Math. {bf 6} (2015), no. 2, 254--258.




How to Cite

Nhari, F.- dine, Park, C., & Rossafi, M. (2023). Continuous $K$-$g$-fusion frames in Hilbert $C^*$-modules. Jurnal Matematika, Statistika Dan Komputasi, 19(2), 240-265.



Research Articles