Continuous $K$-$g$-fusion frames in Hilbert $C^*$-modules
DOI:
https://doi.org/10.20956/j.v19i2.23961Keywords:
Continuous fusion frame, Continuous $g$-fusion frame, Continuous $K$-$g$-fusion frame, $C^{\ast}$-algebra, Hilbert $C^{\ast}$-moduleAbstract
In this paper, we introduce the concept of continuous $g$-fusion frame and $K$-$g$-fusion frame in Hilbert $C^{\ast}$-modules. Furthermore, we investigate some properties of them and discuss the perturbation problem for continuous $K$-$g$-fusion frames.
References
bibitem{11} S. T. Ali, J. P. Antoine, J. P. Gazeau, emph{Continuous frames in Hilbert spaces}, Ann. Phys. {bf
} (1993), 1--37.
bibitem{Deh} A. Alijani, M. Dehghan, emph{$ast$-Frames in Hilbert $mathcal{C}^{ast}$-modules}, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. {bf 73} (2011), no. 4, 89--106.
bibitem{Ara} L. Arambav{s}i'{c}, emph{On frames for countably generated Hilbert $mathcal{C}^{ast}$-modules}, Proc. Am. Math. Soc. {bf 135} (2007), 469--478.
bibitem{Con} J. B. Conway, emph{A Course in Operator Theory}, Am. Math. Soc., Providence, RI, 2000.
bibitem{dz} D. Du, Y.-C. Zhu, emph{Constructions of $K$-$g$-frames and tight $K$-$g$-frames in Hilbert spaces}, Bull. Malays. Math. Sci. Soc. {bf
} (2020), 4107--4122.
bibitem{Dav} F. R. Davidson, emph{$mathcal{C}^{ast}$-Algebra by Example}, Fields Inst. Mono. {bf 6}, Am. Math. Soc., Providence, RI, 1996.
bibitem{Duf} R. J. Duffin, A. C. Schaeffer, emph{A class of nonharmonic Fourier series}, Trans. Am. Math. Soc. {bf 72} (1952),
--366.
bibitem{Fang} X. Fang, J. Yu, H. Yao, {it Solutions to operator equations on Hilbert $C^{ast}$-modules}, Linear Algebra Appl. {bf 431} (2009), 2142--2153.
bibitem{Lar1} M. Frank, D. R. Larson, emph{$mathcal{A}$-Module frame concept for Hilbert $mathcal{C}^{ast}$-modules, functional and harmonic analysis of
wavelets}, Contempt. Math. {bf 247} (2000), 207--233.
bibitem{r4} S. Kabbaj, M. Rossafi, {it $ast$-Operator frame for $End_{mathcal{A}}^{ast}(mathcal{H})$}, Wavelet Linear Algebra {bf 5} (2018), no. 2, 1--13.
bibitem{15} G. Kaiser, emph{A Friendly Guide to Wavelets}, Birkh"{a}user, Boston, 1994.
bibitem{Kap} I. Kaplansky, emph{Modules over operator algebras}, Am. J. Math. {bf 75} (1953), 839--858.
bibitem{ka}S. K. Kaushik, L. K. Vashisht, S. K. Sharma, {it Some results concerning frames associated with measurable spaces}, TWMS J. Pure Appl. Math. {bf 4} (2013), no. 1, 52--62.
bibitem{Kho2} A. Khorsavi, B. Khorsavi, emph{Fusion frames and $g$-frames in Hilbert $mathcal{C}^{ast}$-modules}, Int. J. Wavelet, Multiresolution
Inform. Process. {bf 6 } (2008), 433--446.
bibitem{Lanc} E. C. Lance, {it Hilbert $C^{ast}$-Modules: A Toolkit for Operator Algebraist}, London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 1995.
bibitem{lil}
D. Li, J. Leng, T. Huang, {it On some equalities and inequalities of fusion frame in Hilbert $C^*$-modules}, J. Math. Inequal. {bf 13} (2019), 437--449.
bibitem{lh} Y.-Z. Li, T. Hussain, emph{Duality principles for $F_a$-frame theory in $L^2(mathbb{R}_+)$}, Bull. Malays. Math. Sci. Soc. {bf
} (2021), 2401--2423.
bibitem{Pas} W. Paschke, emph{Inner product modules over $B^{ast}$-algebras}, Trans. Am. Math. Soc. {bf 182} (1973), 443--468.
bibitem{r5} M. Rossafi, S. Kabbaj, {it $ast$-$K$-$g$-Frames in Hilbert $mathcal{A}$-modules}, J. Linear Topol. Algebra {bf 7} (2018), 63--71.
bibitem{r6} M. Rossafi, S. Kabbaj, {it $ast$-$g$-Frames in tensor products of Hilbert $C^{ast}$-modules}, Ann. Univ. Paedagog. Crac. Stud. Math. {bf 17} (2018), 17--25.
bibitem{r3} M. Rossafi, S. Kabbaj, {it Operator frame for $End_{mathcal{A}}^{ast}(mathcal{H})$}, J. Linear Topol. Algebra {it 8} (2019), 85--95.
bibitem{r1} M. Rossafi, S. Kabbaj, {it $ast$-$K$-Operator frame for $End_{mathcal{A}}^{ast}(mathcal{H})$,} Asian-Eur. J. Math. {bf 13} (2020), Art. ID 2050060.
bibitem{r9} M. Rossafi, S. Kabbaj, {it Generalized frames for $B(mathcal{H, K})$}, Iran. J. Math. Sci. Inf. {bf 17} (2022), no. 1, 1--9.
bibitem{va} L. K. Vashisht, {it Banach frames generated by compact operators associated with a boundary problem}, TWMS J. Pure Appl. Math. {bf 6} (2015), no. 2, 254--258.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Author and publisher
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.