Fixed point theorem for Nonlinear $\theta-\phi-$contraction via $w-$distance
DOI:
https://doi.org/10.20956/j.v19i1.20866Keywords:
Fixed point, Nonlinear $\theta-\phi-$contraction, $w-$distance, ntegral equation.Abstract
This paper is aimed to the notion of $\theta-\phi-$contraction defined on a metric space with $w-$distance. Moreover, fixed point theorems are given in this framework. Some illustrative examples are provided to advocate the usability of our results.
As an application, we prove the existence and uniqueness of a solution for the nonlinear Fredholm integral equations.
References
bibitem{ALG} C. Alegre, J. Marín, S. Romaguera, A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces. Fixed Point Theory Appl 2014, 40 (2014).
bibitem{BAN} S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., $3, (1922), 133-181.$
bibitem{KADA} O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., 44, (1996), 381–391.
bibitem{KIR} W. A. Kirk, N. Shahzad, Generalized metrics and Caristi’s theorem. Fixed Point Theory Appl 2013, 129 (2013).
bibitem{KRI} A. Kari, M. Rossafi, E. Marhrani, M. Aamri, $theta-phi-$contraction on $(alpha,eta)-$complete rectangular $b-$metric spaces, International Journal of Mathematics and Mathematical Sciences, vol. 2020, Article ID 5689458, 9 pages, 2020. https://doi.org/10.1155/2020/5689458
bibitem{KA1} A. Kari, M. Rossafi, E. Marhrani, M. Aamri, New Fixed Point Theorems for $theta-phi-$contraction on complete rectangular $b-$metric spaces, Abstract and Applied Analysis, vol. 2020, Article ID 8833214, 12 pages, 2020. https://doi.org/10.1155/2020/8833214
bibitem{KAR} A. Kari, M. Rossafi, E. Marhrani, M. Aamri, Fixed-Point Theorem for Nonlinear $ F $-Contraction via $ w$-Distance, Advances in Mathematical Physics, vol. 2020, Article ID 6617517, 10 pages, 2020. https://doi.org/10.1155/2020/6617517
bibitem{KA3} A. Kari, M. Rossafi, H. Saffaj, E. Marhrani, M. Aamri, Fixed-Point Theorems for $ theta-phi $-Contraction in Generalized Asymmetric Metric Spaces, International Journal of Mathematics and Mathematical Sciences, vol. 2020, Article ID 8867020, 19 pages, 2020. https://doi.org/10.1155/2020/8867020
bibitem{PIRI1} H. Piri, P. Kumam, Wardowski type fixed point theorems in complete metric spaces. Fixed Point Theory Appl 2016, 45 (2016).
bibitem{PIRI} H. Piri, P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 210 (2014).
bibitem{JS} M. Jleli, E. Karapinar, B. Samet, Further generalizations of the Banach contraction principle. J. Inequal. Appl. 2014, Article ID 439 (2014).
bibitem{WONG} T. Wongyat, W. Sintunavarat, The existence and uniqueness of the solution for nonlinear Fredholm and Volterra integral equations together with nonlinear fractional differential equations via w-distance. Adv Differ Equ 2017, 211 (2017).
bibitem{ZH} D. Zheng , Z. Cai , P. Wang, New fixed point theorems for $ (theta,phi )$-contraction in complete metric spaces.J. Nonlinear Sci. Appl., 10, (2017), 2662-2670.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Author and publisher
This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Matematika, Statistika dan Komputasi is an Open Access journal, all articles are distributed under the terms of the Creative Commons Attribution License, allowing third parties to copy and redistribute the material in any medium or format, transform, and build upon the material, provided the original work is properly cited and states its license. This license allows authors and readers to use all articles, data sets, graphics and appendices in data mining applications, search engines, web sites, blogs and other platforms by providing appropriate reference.