Anthropometry as Indicator of the Family Economic Condition

Lely Wahyuniar (1), Bambang Sutrisna (2), Abas B. Djauhari (3), Ratna Djuwita (4)
(1) Sekolah Tinggi Ilmu Kesehatan (STIKKES) Kuningan, Jawa Barat, Indonesia,
(2) Departemen Epidemiologi Fakultas Kesehatan Masyarakat Universitas Indonesia, Indonesia,
(3) Pusat Kajian Gizi Kementerian Kesehatan RI,
(4) Departemen Epidemiologi Fakultas Kesehatan Masyarakat Universitas Indonesia, Indonesia

Abstract

The prevalence of Indonesian population experiencing hunger reaches 20.1%.
Anthropometry is considered capable to measure socio-economic conditions
because it is directly related to the financial purchasing power of food that affects
intake patterns. The aim of this study is to test the reliability of the family
anthropometry using Height for Age Z Score (HAZ) index and Body Mass Index Z
Score (BMIZ) as indicator of the family economic condition. This cross-sectional
study design located in Astanajapura (Rural) and Kesambi (Urban) Subdistrict,
Cirebon, West Java. The stratification sampling method was held to obtain
samples from all main family members of the selected households (1,999
persons) from 405 families. Data analysis used ROC method to obtain the cut-off
points of anthropometry index, validity test for sensitivity and specificity, and
Kappa test for the reliability test. The findings indicate that the family HAZ
anthropometry index could represent the family economic condition better than
the BMIZ and it is reliable to become an indicator for the economic condition both
in rural and urban areas. There is a positive correlation between consumption per
capita and the HAZ index where the higher the family HAZ z score is, the higher
the family consumption per capita. The method can be used to measure the poor
prevalence in macro level and select the target of poor families in the micro level
using the family HAZ anthropometry index. It is recommended to use HAZ index
to estimate prevalence of poor families within the micro level, but the process
must not include children under two years old due to the technical obstacle
during measurement and other substance factors. Further research is needed to
produce a more accurate method in using the family anthropometry as an
indicator of family economic condition.

Full text article

Generated from XML file

References

UNICEF. Children, Food and Nutrition: Growing Well in a Changing World. [Reports]. 2019.

UNICEF. World Hunger is Still Not Going Down after Three Years and Obesity is Still Growing–UN Report. 2019.

The Central Statistics Agency. The Official News of Indonesian Statistics. Jakarta, Indonesia: The Central Statistics Agency; 2019.

Global Hunger Index. 2019 Global Hunger Index by Severity. 2019.

Delisle H, Batal M. The Double Burden of Malnutrition Associated with Poverty. The Lancet. 2016;387(10037):2504–2505.

FAO, World Bank. Food Data Collection in Household Consumption and Expenditure Surveys : Guidelines for Low and Middle Income Countries. Food and Agriculture OeganizationThe World Bank Group; 2018.

Kim R, Rajpal S, Joe W, Corsi DJ, Sankar R, Kumar A, et al. Assessing Associational Strength of 23 Correlates of Child Anthropometric Failure: An Econometric Analysis of the 2015-2016 National Family Health Survey, India. Social Science Medicine. 2019;238(112374):1-10.

Tyrrell J, Astley CM, Tuke M, Hirschhorn JN, Weedon MN. Height, Body Mass Index, and Socio Economic Status: Mendelian Randomisation Study in UK Biobank. BMJ. 2016;352(582):1-10.

Asiseh F, Yao J. Family Income and Body Mass Index – What Have We Learned From China. Health Economics Review. 2016; 6(52):1-10.

Bommer C, Vollmer S, Subramanian S V. How Socioeconomic Status Moderates the Stunting-Age Relationship in Low Income and Middle-Income Countries. BMJ Global Health. 2019;4(1):1–10.

Mary S. How Much Does Economic Growth Contribute to Child Stunting Reductions? Economies. 2018;6(4):1-8.

The Central Statistics Agency. District/City Poverty Data and Information in 2018. Jakarta, Indonesia: Central Statistics Agency; 2018.

The Central Statistics Agency. Poverty Line Calculation, Percentage of Poor Population and Poverty Severity Index. Jakarta, Indonesia: Central Statistics Agency; 2019.

Petca A, Colceriu AD, Bălăianu A, Diac I, Dogăroiu C. Anthropometric Measurements Illustrating the Socio-Economic Effects on Growth and Development in a Subadult Sample Population in Romania. Romanian Society of Legal Medicine. 2019;27(2):130–135.

Herzog B, Lacruz ME, Haerting J, Hartwig S, Tiller D, et al. Socio-Economic Status and Anthropometric Changes - A Meta-Analytic Approach from Seven German Cohorts. Obesity. 2016;24(3):710–718.

Parikka S, Mäki P, Levälahti E, Lehtinen Jacks S, Martelin T, Laatikainen T. Associations Between Parental BMI, Socioeconomic Factors, Family Structure and Overweight in Finnish Children: A Path Model Approach Disease Epidemiology Chronic. BMC Public Health. 2015;15(1):1–10.

Haryanto T, Umar U. Kondisi Sosial Ekonomi Rumah Tangga dan Masalah Stunting Balita di Indonesia. Media Trend Berkala Kajian Ekonomi & Studi Pembangunan. 2019;14 (1):41–48.

Fikrina LT. Hubungan Tingkat Sosial Ekonomi Dengan Kejadian Stunting Pada Balita Usia 24-59 Bulan Di Desa Karangrejek Wonosari Gunung Kidul. Yogyakarta: Fakul-tas Ilmu Kesehatan Universitas ‘Aisyiyah Yogyakarta; 2017.

Devakumar D, Kular D, Shrestha BP, Grijalva-Eternod C, Daniel RM, Saville NM, et al. Socioeconomic Determinants of Growth in a Longitudinal Study in Nepal. Maternal Child Nutrition. 2017;14(1):1–8.

Aryastami NK, Shankar A, Kusumawardani N, Besral B, Achadi E, Jauhari AB. Low Birth Weight Was the Most Dominant Predictor Associated with Stunting Among Children Aged 12–23 Months in Indonesia. BMC Nutrition. 2017;3(16):1–6.

Titaley CR, Ariawan I, Hapsari D, Muasyaroh A, Dibley MJ. Determinants of the Stunting of Children Under Two Years Old in Indonesia: A Multilevel Analysis of the 2013 Indonesia Basic Health Survey. Nutrients. 2019;11(5): 1-13.

Marty L, Dubois C, Gaubard MS, Maidon A, Lesturgeon A, Gaigi H, et al. Higher Nutritional Quality at No Additional Cost among Low-Income Households: Insights from Food Purchases of “Positive Deviants”. American Journal of Clinical Nutrition. 2015;102(1):190–198.

Poirier MJP, Grépin KA, Grignon M. Approaches and Alternatives to the Wealth Index to Measure Socioeconomic Status Using Survey Data: A Critical Interpretive Synthesis. Social Indicators Research. 2020;148:1-46.

Moeed MA, Azam I, Naz F, Salman M. Social Determinants of Anthropometric Outcomes: A Differentiation and Correlation Study. International Journal of Scientific Research. 2017;6(10):337–340.

Ajayi OR, Matthews G, Taylor M, Kvalsvig JD, Davidson LL, Kauchali S, et al. Association of Anthropometric Status and Residential Locality Factors with Cognitive Scores of 4–6-Year-Old Children in Kwazulu-Natal, South Africa. South African Journal Clinical Nutrition. 2019;33(4):1-9.

Ervin PA, Bubak V. Closing the Rural-Urban Gap in Child Malnutrition: Evidence from Paraguay, 1997–2012. Economics Human Biology. 2019;32:1–10.

Noviana U, Ekawati H. Analisis Faktor Berat Badan Lahir, Status Ekonomi Sosial, Tinggi Badan Ibu Dan Pola Asuh Makan

dengan Kejadian Stunting. Prosiding Seminar Nasional Poltekkes Karya Husada Yogyakarta. 2019;1(1):31–45.

Fitriahadi E. Hubungan Tinggi Badan Ibu dengan Kejadian Stunting pada Balita Usia 24-59 Bulan. Jurnal Kebidanan dan Keperawatan Aisyiyah. 2018;14(1):15–24.

World Bank. Classifying Countries by Income. World Bank Group; 2019. 30. Mejía-Guevara I, Corsi DJ, Perkins JM, Kim R, Subramanian S V. Variation in Anthropometric Status and Growth Failure in Low and Middle-Income Countries. Pediatrics. 2018; 141(3):1-9.

Rahmariza E, Tanziha I, Sukandar D. Analisis Determinan Karakteristik Keluarga Dan Pemenuhan Hak Kesehatan Anak Serta Dampaknya Terhadap Status Gizi. Media Kesehatan Masyarakat Indonesia. 2016;12 (3):153–160.

Grasgruber P, Hrazdíra E. Nutritional and Socio-Economic Predictors oAdult Height in 152 World Populations. Economics Human Biology. 2020;37.

Dewey KG. Reducing Stunting by Improving Maternal, Infant and Young Child Nutrition in South Asia: Evidence, Challenges and Opportunities. Maternal & Child Nutrition. 2016;12(1):27–38.

WHO. WHO Child Growth Standards. Geneva: WHO Press; 2007.

Kemenkes RI. Peraturan Menteri Kesehatan Nomor 73 tahun 2014 tentang Angka Kecukupan Gizi yang Dianjurkan untuk Bangsa Indonesia. Jakarta: Kementerian Kesehatan RI; 2014.

Pusat Informasi Harga Pangan Strategis Nasional. Perkembangan Harga Pangan Berdasarkan Daerah. Indonesia; 2018.

Authors

Lely Wahyuniar
myrandaputri@gmail.com (Primary Contact)
Bambang Sutrisna
Abas B. Djauhari
Ratna Djuwita
Author Biographies

Lely Wahyuniar, Sekolah Tinggi Ilmu Kesehatan (STIKKES) Kuningan, Jawa Barat

Sekolah Tinggi Ilmu Kesehatan (STIKKES) Kuningan, Jawa Barat

Bambang Sutrisna, Departemen Epidemiologi Fakultas Kesehatan Masyarakat Universitas Indonesia

Departemen Epidemiologi
Fakultas Kesehatan Masyarakat Universitas Indonesia

Ratna Djuwita, Departemen Epidemiologi Fakultas Kesehatan Masyarakat Universitas Indonesia

Departemen Epidemiologi
Fakultas Kesehatan Masyarakat Universitas Indonesia
Wahyuniar, L., Sutrisna, B., Djauhari, A. B., & Djuwita, R. (2020). Anthropometry as Indicator of the Family Economic Condition. Media Kesehatan Masyarakat Indonesia, 16(4), 477–489. https://doi.org/10.30597/mkmi.v16i4.11025

Article Details

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.