This is an outdated version published on 2020-07-29. Read the most recent version.

Correlation of Climate Variability and Burned Area in Borneo using Clustering Methods

Forest fire fuzzy c-means k-means clustering climate Borneo

Authors

Vol. 4 No. 2 (2020): NOVEMBER
Regular Research Articles

Versions


Deprecated: json_decode(): Passing null to parameter #1 ($json) of type string is deprecated in /home/journal33/public_html/plugins/generic/citations/CitationsPlugin.inc.php on line 49

The island of Borneo has faced seasonal forest fires for decades. This phenomenon is worsening during dry seasons, especially when droughts are concurrent with the El Niño-Southern Oscillation (ENSO) phenomenon. Climate is therefore one of the drivers of the fire phenomenon. This paper studies the relationship between climate variables, namely temperature, precipitation, relative humidity, and wind speed, and the occurrence of forest fire using two clustering methods, K-means and Fuzzy C-means (FCM) clustering methods. Borneo is clustered into four areas based on burned area data obtained from Global Fire Emission Data (GFED). It is also clustered according to the combinations of climate variables. Both methods reach the highest correlation between the climate variable and the burned area clusters in September. The K-means method gives a correlation of -0.54 while the FCM gives -0.55. In August until October, relative humidity provides the dominant correlation affecting burned area, even though an additional precipitation or wind variable slightly increases the correlation in the FCM method. In November, temperature largely contributed to the burned area by a positive correlation of 0.31 in K-means and 0.33 in FCM. The evaluation performance of the methods is conducted by an internal validation called the Silhouette index. Both methods have positive index values ranging from 0.39 to 0.69 and the maximum value is influenced by the wind cluster. This indicates that the clustering methods applied in this paper can identify one or a combination of climate variables into dense and well-separated clusters.

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.