Analysis of the Effect of Using Concrete Mattresses on Subsea Pipelines
Main Article Content
Abstract
This Leaks in oil and gas pipes under the sea will cause pollution and threaten the ecosystem in the sea. Damage to underwater pipes caused by anchors has quite a large percentage, therefore good prevention efforts are needed so that leaks do not occur which have a negative impact on environment and economy. The aim of this research is to find out how the strength compares between pipes that use protective concrete mattresses and pipes without protective concrete mattresses when hit by ship anchors. This research uses explicit dynamic simulation using Finite Element Method software. Based on explicit dynamic analysis, deformation values and equivalent stress values are obtained after being hit by an anchor at a speed of 5,491 m/s. For unprotected pipes experiencing significant damage, when viewed from the deformation values obtained, namely amounted to 0.143 m, while for the pipe model with protection the deformation value obtained was 0.0769 m. For pipes without protection and pipes that use protection with a thickness of 0.15 m, the deformation value is both above the maximum value that has been determined, namely 10% of the diameter value and when viewed from the equivalent stress value, for pipes without protection the equivalent stress value is obtained. namely 1,150 MPa, while the pipe that uses a protector is 240 MPa, the equivalent stress value obtained by the pipe using a protector is below 780 MPa, which means that the use of pipe protectors is quite effective in reducing damage that occurs to the pipe.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Arieshanida, F & Paramashanti (2013) analisis resiko pipa bawah laut akibat tumbukan jangkar.
Azisah, Nur. 2020. ”Analisa Penempatan dan Kebutuhan Proteksi Katodik pada Pipa Offshore”
Badan Perencanaan Kepulauan Riau. (2015) “Perencanaan Strategis Bidang Energi Provinsi Kepulauan Riau”.
Dalimunthe, H.R. (2014). Desain dan analisis velg mobil berbasis aluminium alloy.
Dea, R.V & Paramahsanti (2013) Analisa risiko jalur pipa bawah laut akibat jatuhnya jangkar
Devi, F.P ,Usadha,Wibowo,I.L&Mukhlash,I .(2017) Penilaian resiko pipa bawah laut oleh faktor kapal menggunakan pendekatan Bayesian network
Diahutari,N.W.E. (2022). “Analisis Penilaian Risiko Kebocoran Pipa Gas Bawah Laut Akibat Aktivitas Galangan Di Tanjung Uncang”
DNV RP-F107 (2010). “Risk Assessment Of Pipeline Protection”
Goldbold J. & Sackmann N. (2014), Stability Design For Concrete Mattress, International Ocean And Polar Engineering Conference.
Guo,B.,Song, S., Chacko, Jacob, Ghalambor, A.(2005). Offshore Pipelines
K. Marcjan, R. Dzikowski & M. Bilewski. (2017). Criteria of Accidental Damage by Ships Anchors of Subsea Gas Pipeline in the Gdańsk Bay Area
Kementerian Energi dan Sumber Daya Mineral. 2022. "Cadangan Migas", https://geoportal.esdm.go.id/migas/, diakses pada 2 Mei 2023 pukul 09.00.
Konflik, R., & Ekonomi, Z. (2022). Indonesia Dan Vietnam Dalam Pengamanan Sumber Daya Maritim Natuna Utara. 1(03), 418–425.
Liu, Y. T., H. Hu, dan Y. B. Song. (2011) “Pipeline Integrity Management System Based On Dynamic Risk Assessment”. Journal Of Shanghai Jiaotong University, Vol.45, No.5. (Pp 687-690).
Maccaferi, 2013, Articulated Concrete Block Matress (Acbm, Bologna Meccaferi)
Mahendra, D. M, Munte.H .N ,Saputra. O. E. A, & Mardhatillah Z. (2022). Resolusi Konflik Zona Ekonomi Eksklusif Indonesia Dan Vietnam Dalam Pengamanan Sumber Daya Maritime Natuna Utara.
Martaningtyas, M., & Ariesyady, D. (2018). Identifikasi Bahaya Dan Analisis Risiko Pada Jaringan Pipa Transmisi Crude Oil Di Pt . X
Nanda, J. F, Dhanistha, W. L & Silvianita. (2022). Penilaian Resiko Kerusakan Pipa Bawah Laut Milik Pt.Perusahaan Gas Negara Di Labuhan Maringgai-Muara Bekasi Akibat Kejatuhan Jangkar Menggunakan Metode Monte Carlo.
Nugraha, M. C., Suntoyo & Hadiwidodo, Y. S. (2012). Analisis Pengaruh Scouring Pada Pipa Bawah Laut ( Studi Kasus Pipa Gas Transmisi Sswj Jalur Pipa Gas Labuhan Maringgai-Muara Bekasi. 1(1), 247–252.
Pipeshield “Concrete matresses”, https://pipeshield.com/products/concrete-matresses/, diakses pada 5 juni 2023 pukul 20.00
A Sulardi (2020). P-28 Evaluasi Kerusakan Pipa Bawah Laut Dan Metode Perbaikannya. 200–206.
Sulardi (2020). Proteksi Pipa bawah laut dengan metode articulated concrete block mattresses.
Syukur,M.H. (2015). Potensi Gas Alam Di Indonesia.
Tawekal, R. L., Velas, J. De,. (2019). Subsea Pipeline Protection Design Subjected To Dropped Anchor Using Concrete Matresses. 17(60), 251–258.
Triyatno, J. (2018). Perbandingan penggunaan gas alam terhadap LPG dalam memenuhi kebutuhan rumah tangga di bontang.
Windadi, A. (2022). “Analisis Kerusakan Pipa Bawah Laut Akibat Tarikan Jangkar Dengan Metode Elemen Hingga”
N. Darwis, “Comparison Of Mooring Line Length Against Fpso Ship Movement Characteristics Using Numerical Analysis”, zonalaut, vol. 5, no. 1, pp. 102-111, Mar. 2024.